
Journal of Techniques, Vol. 2, No. 1, March 30, 2020, Pages 22-29 

 

22 
 

  

 

 

  

 

RESEARCH ARTICLE - ENGINEERING 

Finite Element Modeling of Saint-Venant Equations for Shatt-Al Hilla 

Basim Sh. Abed
 *1

, Hamid H. Hussain, Khalid A. Abdul-Razzaq 

1 
Technical College of Musaib, Foundation of Technical Education, Baghdad, Iraq 

2
 Technical Inst. of Musaib, Foundation of Technical Education, Baghdad, Iraq 

3
 College of Engineering, University of Baghdad, Baghdad, Iraq 

* Corresponding author E-mail: drbsa62@gmail.com  

Article history Abstract 

 

Received 

11 Nov 2019 

 

Accepted 

15 Dec 2019 

 

Published 

30 March 2020 

 

Shatt Al-Hilla was considered one of the important branches of Euphrates River that supplies irrigation water to millions 
of dunams of planted areas. It is important to control the velocity and water level along the river to maintain the required 

level for easily diverting water to the branches located along the river. So, in this research, a numerical model was 

developed to simulate the gradually varied unsteady flow in Shatt AL-Hilla. The present study aims to solve the 
continuity and momentum (Saint-Venant) equations numerically to predict the hydraulic characteristics in the river using 

Galerkin finite element method. A computer program was designed and built using the programming language 

FORTRAN-77. Fifty kilometers was considered starting from downstream of Hindiyah Barrage towards Hilla city. The 
gathered field measurements along different periods were used for the purpose of calibration and verification of the 

model. The results show that the suitable Manning roughness was 0.023. A comparison with field observations was 

conducted to identify the validity of the numerical solution of the flow equations. The obtained results indicate the 

feasibility of the numerical techniques using a weighting factor of 0.667 and a time increment of 6 hr. High accuracy and 

good agreement were achieved, and minimum Root Mean Square Error (RMSE) of 0.029 was gained for the obtained 

results compared with the corresponding field observations. 
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1. Introduction 

  The study of water resources projects and hydraulic constructions, their development, and management has become one of the major 

concerns of society.  The escalating demands of limited water resources and the need for maintaining water quality suitable for human, 

agricultural, and industrial uses and the complex interactions of the numerous elements of the man-water environments have necessitated the 

use of more sophisticated forecasting, designing, and management of water resources systems [1]. Shatt Al-Hilla was considered one of the 

important main branches of Euphrates River and irrigates large scales of planted areas in the middle of Iraq. The selected reach of Shatt Al-

Hilla is extended in alluvial soils, and pass through successive planted areas located along, and directly surpass the water of the river [2]. So, 

it is necessary to study the flow characteristics in the river to specify the flow issues and to control the velocity and water level along the 

profile to maintain the required water level and to easily deliver the water to the branches located along the reach, as well as to avoid the 

sedimentation problems [3]. Approximately fifty kilometers length of Shatt Al-Hilla was considered in the present research. Fig. (1) illustrates 

the layout of the reach of the study. This work was supported by field measurements for a period of thirty days for the purpose of field 

application of the model. Flow in streams is seldom steady, the mathematical model derived from the continuity and the momentum, the 

Saint-Venant equations, can simulate the gradually varied unsteady flow in a river reach. These are generally expressed as one-dimensional 

nonlinear partial differential equations [4,5]. There is no analytical solution for these equations, so numerous finite difference methods have 

been developed for solving these equations using different schemes and approaches [6,7]. The finite element method in one form or another 

exists as a numerical procedure for solving these equations and others, but it did not gain enough attention until powerful computers become 

available [8,9]. The Weighted- Implicit Galerkin finite element method was adopted herein for solving the Saint-Venant equations [3,10]. The 

Galerkin method is a particular weighted residual finite element method in which the weighting function (  ) is the same as the shape 

function (N) [9]. The general objective of the present study is to solve the Saint-Venant Equations to simulate the flow characteristics of the 
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unsteady-state flow in Shatt Al-Hilla using numerical techniques, namely Galerkin finite element method. As well as simulating the unsteady 

flow in Shatt Al-Hilla to be considered as a case study for testing the validation of the numerical solution. 

  

Fig. 1. Layout of the study reach of Shatt Al-Hilla (Authority of Hill-Kifel Project). 

 

2. Theoretical Concepts 

  The basic flow equations mathematically describing unsteady river flow are the continuity equation, derived from the principle of 

conservation of mass, and momentum equation, derived from the principle of conservation of momentum. The derivation details of Saint-

Venant equations may be found in standard works of hydraulics [2, 5].  

  The mass and momentum conservation equations (the hydrodynamic part of the model) can be written as; 
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 R = Hydraulic radius (m) 

X = Distance (m)  

t = Time (sec)     

The positive and negative signs in last terms of Eqs. (1) and (2) refers to lateral inflow and outflow, respectively.                                                          

3. Numerical Solution  

  The reach of the river was divided into 36 elements (37 sections or nodes). For the purpose of keeping the calculations simple, the linear 

shape function was selected, and the time cost will be minimal. If a function defined as y(x, t) (or y for simplicity) was assumed to be linearly 

varied in the elements forming the flow field, the following relationship results [2, 5]:  

    
          

                                                                                                                                                                                                                         ( ) 

 

In which    
      ⁄  , and    

      ⁄    are the linear shape function of the elements at nods 1 and 2, respectively. Similarly, it can also be 

written for other variables.   

Application of the Galerkin weighted residual principles to Eqs. (1) and (2) will produce a system of non-linear ordinary differential equations 

with respect to time. The mathematical expressions for these equations are: 
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In which summation of formulation equations was carried out for individual element equations, from element (k-1); and    represents the 

transpose of the shape function N.  

Evaluation of the individual terms presented in Eqs. (4) and (5) which extends over the length of each element will yield the following non-

linear ordinary differential form of finite element equations; 
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where, dots,  , refer to time differentiation.  

 For conducting the formulation of Eqs. (6) and (7) in a finite element form as a grid which consists of multi-elements, they will be arranged 

in a matrix form contains the summation of N elements. This summation form usually needs to call the elements assembly.  

 The form of a global assembled matrix equation for Eqs. (6) and (7) will be; 

,  -* +  , -*  +  * +                                                                                                                                                                                                     ( ) 

and  

, -*  +  , -*  ⁄ +  , -* +  , -{  }  , -{   }                                                                                                                                                   ( ) 

where the brackets [ ] and { }refer to the global matrix and the vector of the global column, respectively. 
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When the dimensionless time-weighting factor ∅ is applied as well as the forward difference scheme is implemented to Eqs. (8) and (9), 

which will result in the following non-linear algebraic Eqs. (10) and (11):  
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where, ∅ can vary between 0 and 1.  

  The generalized iterative functional method that is well-known as the Newton- Raphson method [4] is employed for the simultaneous 

solution of Eqs. (10) and (11) which can be written in a functional form as: 
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  The number of elements between upstream and downstream boundaries is (N-1). Thus total equations of (2N-2) with (2N) unknowns are 

obtained. The upstream boundaries provide the additional two equations required to complete the needed number of equations for the system. 

The upstream boundary condition consists of a rating curve measured at station No. 1 at almost one-hour intervals, Fig. (2). While the 

downstream boundary condition consists of a stage hydrography measured at station No. 37 for the same interval, Fig. (3).  A computer 

program was designed and built as a part of the present research and the programming language FORTRAN-77 was employed to write the 

program.  

4. Results and Analysis 

  For the purpose of testing the numerical model, field observation along a time period of eleven days is prepared and the data is roughly 

separated into two groups. The first group is used for the calibration of the model, while the second group is used for verification. The 

calibration of Shatt AL-Hilla simulation mainly involves the flow resistance representation by Manning's roughness coefficient (n), and the 

choice of time step    and weighting factor ∅, to ensure convergence and accuracy of the solution. 
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Fig. 2. Upstream boundary condition: Rating curve of (Shatt Al-Hilla) at station No.1. 

  A series of computations were performed with specified values of ∅                  , and lateral inflow          
     ⁄  These 

computations were conducted with different Manning coefficient ranging between 0.10 and 0.04, Fig. (4). The results indicate that the 

appropriate value of Manning coefficient was 0.023 for the studied reach of the river, which achieves good agreement with the observed 

water level, due to the smallest value of RMSE of 0.016. 

 

    Fig. 3. Downstream boundary condition: Stage hydrograph of (Shatt-Al Hilla) at station No.37. 
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Fig. 4. Effect of Manning Roughness, (n), on the estimated stage hydrograph at Shatt-Al Hilla (Δt =6 hr and  ∅ =0.667). 

  Another series of computations were conducted for the choice of convenient values of the parameters that control the numerical 

computations, which have an effect on the accuracy and convergence. These parameters are  ∅          

  Figs. (5) and (6) show the effect of different values of ∅         on the results obtained by the simulation model, respectively. The 

comparison illustrated in these figures between the calculated and observed values indicates that the appropriate value ∅           The time 

increment          will provide quick convergence and accurate results. These values of weighting factor and time increment produced 

smaller values of root mean square error, RMSE, of 0.036 and 0.034, respectively. When these parameters’ values were used, acceptable 

accuracy results were obtained, and minimal time was costed. It is important to mention that an appropriate tolerance limit was specified for 

the terminations of iteration in a minimum time period. 

 

Fig. 5. Effect of weighting factor, ∅, on the estimated stage hydrograph of Shatt-Al Hilla (n=0.023, Δt=6 hr). 
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Verification of the model was achieved using the second group of gathered data with Manning coefficient n=0.03, ∅       , lateral inflow 

    =    
    ⁄ , and             Fig.(7) illustrates the validation of the numerical model and the good agreement of the results obtained 

from the simulation model with the observed stage values. The achieved RMSE was 0.029. 

 

Fig. 6. Effect of time interval, Δt, on the estimated stage hydrograph of (Shatt Al-Hilla) (n=0.023, ∅=0.667). 

              

 

Fig. 7. Estimated and observed longitudinal water surface profile of the reach of (Shatt Al-Hilla) (n=0.023, Δt=6 hr,  ∅=0.667). 
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5. Conclusions 

  In this research, the effect of the Manning roughness, time weight-factor, and time interval were studied to investigate their effects on the 

solution of the Saint-Venant equation using the finite element method. As a result, there are many outcomes of the present study which can be 

presented as; 

 

1) A weighted-implicit Galerkin finite element method produces stable and an unconditional solution of unsteady flow (Saint-Venant) 

equations with high accuracy.  

2) High agreement with observed values, with an acceptable RMSE value, was obtained for the yielded stage hydrograph and rating curve 

when the numerical model was applied to Shatt AL-Hilla as a field problem with specified flow conditions.  

3) The appropriate value of Manning coefficient (n) appears to be 0.023 for the reach of the river considered in the present study. 

4) The appropriate value of the computational parameters ∅ and  ∆t are 0.667 and 6 hr, respectively. 
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