
Journal of Techniques, ISSN: 2708-8383, Vol. 5, No. 1, 2023, Pages 52-57

DOI: https://doi.org/10.51173/jt.v5i1.1059

52

RESEARCH ARTICLE - ENGINEERING

Hybrid Lossless Compression Techniques for English Text

 Jannat Tariq 1*, Mahmood F. Mosleh 1, Maha Abdulameer 2, Huthaifa A. Obeidat 3, Omar A.

Obeidat 4

1 Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq

2 Middle Technical University, Baghdad, Iraq

3 Department of Communications and Electronics Engineering, Jerash University, Jerash, Jordan

4 College of Engineering, Wayne State University, Detroit, Michigan, MI 48202, USA

* Corresponding author E-mail: bbc0052@mtu.edu.iq

Article Info. Abstract

Article history:

Received

01 November 2022

Accepted

80 January 2023

Publishing

01 April 2023

Since the demand for data transfer and storage is always increasing, sending data in its original form will take a long time

to send and receive. Compression is an important issue for digital communications systems because it imposes an important
rule while reducing complexity and power requirements. The goal of compression is to reduce the file size without

compromising the quality of the information, which leads to more capacity saving and reduces the required bandwidth in

terms of the communications system. This paper proposes a system that consists of a hybrid of two lossless techniques,
including a concatenation of Huffman and LZ4 in order to enhance the traditional techniques. The result of the proposed

system demonstrates that the proposed combination techniques reduce the file size significantly, achieving between 73.649

% and 79.708 % in terms of average saving ratio (SR). The above would give us credible, cost-effective, and affordable
lossless encoding systems for electronic communication systems.

This is an open-access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/)
Publisher : Middle Technical University

Keywords: Compression; LCT; CR; SR.

1. Introduction

Handling the increasing volume of data generated by modern day-to-day activities is not an easy task for symmetric communications. According

to [1], approximately 2.5 quintillion bytes of data are generated daily. This quantity of data is quite a lot for conventional computing systems

to manage. Major corporations are producing an abundance of hardware in an effort to provide a better method for dealing with huge quantities

of data; nevertheless, it is nearly impossible to store this data without compression. Data Compression (DC) aims to decrease the file size so

that it demands less storage capacity and less transmission bandwidth across data communication channels [2]. By reducing the amount of data

to be transmitted over error prone data communication channels, DC reduces the number of errors that occur during data transmission [3]. In

wireless communication devices, DC can save considerable amounts of power by compressing data prior to transmission since the power

consumed is directly proportional to the amount of data transmitted [4].

Actually, there have been several types of research analyzing compression techniques. Hanumathaiah et al. 2019 [5] proposed a low-cost low-

power internet of things system for DC. The work is implemented using a mixture of the Delta technique and Run Length Encoding (RLE).

The results indicate a high compression ratio (CR) of 52.67, saving ratio (SR) of 47.33 %, and compression factor of 1.898 for 12bits ADC.

Gopinath et al. 2020 [6] addressed the various compression techniques. The results demonstrate that the Lempel-Ziv-Welch (LZW) technique

has a better CR than other compression techniques for the same text equaling 4.33 and 76.9% in terms of the SR. However, when calculating

execution time, the Delta technique provides better performance than LZW, RLE, and Huffman. Vijayalakshmi et al. 2021 [7] presented a

Tamil technique for text compression. Based on the experimental results, they conclude that the proposed technique demonstrates that it

outperforms Huffman, LZW, and ZIP by 31.85%, 19.58%, and 3.81%, respectively, in terms of average SR. Sridhar et al. 2021 [8] proposed

an idea for the compression of the medical records of patients, which is a large amount of data. The process implementation was done using

Python and Hadoop. The experimental results show that the LZW outperformed the Huffman and RLE. Mahammad et al. 2018 [9] describe a

parallel paradigm based on open multiprocessing. The results indicated that Arithmetic Coding technology delivers a CR of 46%, which is

greater than LZ77's 44% and K-RLE's 37%.

JOURNAL OF TECHNIQUES

Journal homepage: http://journal.mtu.edu.iq

https://doi.org/10.51173/jt.v5i1.1059
mailto:bbc0052@mtu.edu.iq
http://creativecommons.org/licenses/by/4.0/
http://journal.mtu.edu.iq/

Jannat T. et. al, Journal of Techniques, Vol. 5, No. 1, 2023

53

This paper presents a proposed combination system (PCS) that consists of two traditional serial techniques to increase the storage space and the

transfer speed of files by reducing the bit rate. It is worth mentioning the measurement parameters used in this research to evaluate any DC

technique, such as CR and SR. In terms of text files, the PCS is applied to English texts with variable text lengths. Finally, compression will be

applied to highlight the robustness of the system. The organization of this article is shown as follows: Section 2 presents the classification in

DC. Section 3 describes the methodology and PCS. Section 4 shows the results and discussion. In Section 5, the conclusion is provided.

2. Classification in DC

2.1. According to the quality of the data

Techniques can be divided into two categories [10]. The first one is the lossless compression technique (LCT), meaning no data is lost, and the

integrity of the data is retained. During compression, the redundancy is removed, and during decompression, it is recreated so that

decompression will give the original file. The second type of DC is lossy compression decrease bits by removing unimportant or unnecessary

data, as shown in Fig. 1. This strategy is useful in situations where data from certain ranges that the human brain cannot recognize can be

deleted, including video, music, and images. In this research, the first type will be implemented in order to regenerate the original data perfectly.

The approach taken by this work to address the big data challenge is to reduce the size of data before it is transmitted and employ efficient

means of transmitting this data across the network and eventually to its destination.

Compression

techniques

Decompression

techniques

AABBBA

AABBBA

110001

110001

Compression

techniques

Decompression

techniques

3.1415926

3.14

111110000101000100011010001

111110000101000100011010001

Fig. 1. Lossless and lossy techniques

2.2. According to the coding

In this subsection, the classification of DC models based on famous coding methods such as Shannon-Fano [11], Huffman [12], LZW [13],

Lempel-Ziv-4 (LZ4) [14] Arithmetic Coding [15], and RLE [16].

2.3. According to types of data

DC techniques are commonly employed for the compression of data such as text, audio, images, and video.

2.4. According to the application

Numerous techniques can be applied to various application types. For instance, in wireless sensor networks, medical imaging, and other

applications.

3. Methodology

Basically, the compression system is made up of two main components: compression and decompression. The compression process receives

the input file and encodes it so that it may be transmitted. Upon receiving the transmitted file, the decompression process reconstructs it. The

output will be an exact replica of the entry if the process is error-free. Fig. 2 depict the general block diagram of the DC procedure.

3.1. System design

In this work, PCS was proposed for use in compression. The system is designed to reduce the data rate, requiring less storage space and

transmission bandwidth over a communication channel. Fig. 3 illustrates the procedure of the PCS. The proposed system consists of a hybrid of

two LCT to enhance traditional techniques. In this manuscript, we combine Huffman with LZ4. The input of the Huffman part is an English

text with different lengths of (111.262, 610.857, 377.11, 53.162, 82.2, 39.612, 71.647, and 49.38) kB. The Huffman technique reduces the

original file length based on the repetition of symbols. It utilizes variable-length encoding, and each symbol is assigned variable lengths. The

shorter codes will be assigned to symbols that appear more frequently, while symbols that appear less frequently will be assigned longer codes.

To eliminate confusion during decoding, this technique follows the prefix-free principle, which ensures that the code allocated to any symbol

is not a prefix of another symbol’s code [17]. The output of Huffman is fed to the LZ4 part. This work aims to reduce the file's size as much as

possible to make it easy to transfer or store on any simple device.

Nomenclature

DC Data Compression LZW Lempel-Ziv-Welch

RLE Run Length Encoding PCS Proposed Combination System

CR Compression Ratio LCT Lossless Compression Techniques

SR Saving Ratio LZ4 Lempel-Ziv-4

Jannat T. et. al, Journal of Techniques, Vol. 5, No. 1, 2023

54

Transmitter

Receiver

Source code Compression

DecompressionSource decoder

Input data

Original data

Channel

Fig. 2. General block diagram of a DC procedure

Input Text Huffman

LZ4

Compressed
File

LZ4

HUFFMN
Reconstructed

Text

Compression Process

Decompression Process

Fig. 3. Procedure of PCS

Python software is used to compress data by entering text. The following is a program display that is used for the compression process. Fig. 4

shows the steps of the program.

1. Open PCS software.

2. Select the file to be compressed.

3. Click the "RUN" button.

4. Wait for the result to appear in the command window.

Open PCS.exe
Choose file to be

compressed
Click RUN Print and save the result

Fig. 4. Flow chart of compression program

3.2. Performance evaluation

In this section, certain experimental results are displayed and explained. To demonstrate the effectiveness of our PCS, we will use various

criteria to evaluate the performance of the technique. The following is a brief explanation of CR and SR.

3.2.1. Compression Ratio (CR)

When transmitting files over a network, bandwidth is typically limited. Therefore, it is vital to decrease the bit rate as much as feasible. CR

provides an indication of the capacity of the compression technique to compress a variety of network-shared file types [18]. The definition of

CR is as follows (1):

CR=
original file size

compressed file size
 (1)

Jannat T. et. al, Journal of Techniques, Vol. 5, No. 1, 2023

55

3.2.2. Saving Ratio (SR)

The basic objective of any DC technique is to minimize storage space. The ability of the compression technique to reduce the bit rate which

can be measured by calculating its compressing efficiency in terms of SR [19]. According to the literatures, any compression technique that

provides a higher SR should be robust and effective for saving memory space and lowering transmission costs [20]. This subsection evaluates

and illustrates the compression efficiency of the PCS, which was determined using (2) [21]:

4. Results and Discussion

4.1. Our Experiments

All experiments were performed using Python version 3.10.0 on a personal computer with specifications including an Intel Core i5 2.5 GHz

CPU, 16 GB of RAM, and a 64-bit Windows 10 operating system. Our proposed method is applicable to both large and small files. We have

analyzed eight considerable text files from [22]. Table 1 illustrates the different lengths in files of the proposed work.

The previous datasets were compressed in order to evaluate the PCS depending on the CR and SR. Before calculating CR and SR, it is necessary

to calculate the compressed size of each file in the datasets. Table 2 and Fig. 5 show the results of the dataset compression.

The CR has been calculated using (1) and the SR of the PCS is calculated using (2) for each file, and the results are presented in Table 2.

Table 1. The compression file, CR, and SR of the PCS

File name Input data (kB) PCS (kB) CR SR

bib 111.262 27.44575 4.0539 75.332 %

book2 610.857 155.2375 3.935 74.587 %

news 377.11 99.37225 3.7949 73.649 %

paper1 53.162 11.864625 4.4807 77.682 %

paper2 82.2 16.679625 4.9282 79.708 %

progc 39.612 8.508125 4.6558 78.521 %

progl 71.647 14.54975 4.9243 79.692 %

progp 49.38 10.735 4.5999 78.26 %

In all cases, the proposed system performed better. More specifically, PCS has reduced the size of the small file to 8.5 kB while giving 155.2

kB for the input large file.

Fig. 5. The difference between original file size and compressed file

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9

Input file vs PCS

Input data PCS in KB

SR=
original file size-compressed file size

original file size
 ×100% (2)

Jannat T. et. al, Journal of Techniques, Vol. 5, No. 1, 2023

56

It is clear from Table 1 & Fig. 6 that the proposed techniques provide better compression, which indicates an average CR of 4.42. Based on the

results, it is clear that the PCS provides better results, which indicates that it achieves between 73.649 % and 79.708 % in terms of average SR.

Fig. 6. Illustrates the SR and CR

5. Conclusion

Modern daily activities produce massive amounts of data, which creates a significant challenge for file storage and transmission. Compression

is a useful technology that increases the capacity of memory and reduces the data rate to reduce the bandwidth of data transfer. This work

proposes a system to improve text compression in the English language. The PCS consists of two serial compression techniques: Huffman and

LZ4. The input data is represented by the datasets in eight different sizes. The system is modelled using the Python package. The result

demonstrates that the proposed combination techniques reduce the file size significantly, achieving an average SR of between 73.649 % and

79.708 %. In the future, the above technique can be used in practise with an FPGA to verify the above results.

Acknowledgement

We would like to thank the electrical engineering technical college dean for their support and facilities that enabled us to apply our experiment.

In addition, thanks to the department of computer technical engineering for their help and encouragement to finish our research.

References

[1] J. Howarth, “Top 2022 big data statistics,” Available online: https://explodingtopics.com/blog/big-data-stats .

[2] I.M. Pu, “Fundamental Data Compression; Butterworth-Heinemann,” Oxford, UK, 2005.

[3] D. Salomon, G. Motta, “Handbook of Data Compression,” London, New York, Springer, 2010.

[4] S. Porwal, Y. Chaudhary, J. Joshi, and M. Jain, “Data compression methodologies for lossless data and comparison between algorithms,”

Int. J. Eng. Sci. Innov. Technol. (IJESIT) 2013, 2, 142–147.

[5] A. Hanumanthaiah, A. Gopinath, C. Arun, B. Hariharan and R. Murugan, “Comparison of Lossless Data Compression Techniques in Low-

Cost Low-Power (LCLP) IoT Systems,” 2019 9th International Symposium on Embedded Computing and System Design (ISED), 2019,

pp. 1-5, doi: 10.1109/ISED48680.2019.9096229.

[6] A. Gopinath and M. Ravisankar, “Comparison of Lossless Data Compression Techniques,” 2020 International Conference on Inventive

Computation Technologies (ICICT), 2020, pp. 628-633, doi: 10.1109/ICICT48043.2020.9112516

[7] B. Vijayalakshmi and N. Sasirekha. "Comparative Analysis of Lossless Text Compression Methods with Novel Tamil Compression

Technique." vol 9 (2021): 38-44.

[8] A. P. Sridhar and P. V. Lakshmi, “An Efficient Lossless Medical Data Compression using LZW compression for Optimal Cloud Data

Storage,” vol. 25, no. 6, pp. 17144-17160, 2021.

[9] F. S. Mahammad and V. M. Viswanatham, “Performance analysis of data compression algorithms for heterogeneous architecture through

parallel approach, ” 2018.

[10] Z. N. Li, M. S. Drew, and J. Liu, “Fundamentals of multimedia,” Springer, 2004.

[11] R. M. Fano, “The Transmission of Information,” Massachusetts Institute of Technology, Research Laboratory of Electronics, 1949.

bib book2 news paper1 paper2 progc progl progp

CR 4.0539 3.935 3.7949 4.4807 4.9282 4.6558 4.9243 4.5999

SR 75.33% 74.59% 73.65% 77.68% 79.71% 78.52% 79.69% 78.26%

70.00%

71.00%

72.00%

73.00%

74.00%

75.00%

76.00%

77.00%

78.00%

79.00%

80.00%

81.00%

0

1

2

3

4

5

6

CR SR

https://explodingtopics.com/blog/big-data-stats

Jannat T. et. al, Journal of Techniques, Vol. 5, No. 1, 2023

57

[12] D. A. Huffman, “A Method for the Construction of Minimum-Redundancy Codes,” in Proceedings of the IRE, vol. 40, no. 9, pp. 1098-

1101, Sept. 1952, doi: 10.1109/JRPROC.1952.273898.

[13] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compression,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337–343,

1977, doi: 10.1109/TIT.1977.1055714.

[14] W. Liu, F. Mei, C. Wang, M. O’Neill and E. E. Swartzlander, “Data Compression Device Based on Modified LZ4 Algorithm,” in IEEE

Transactions on Consumer Electronics, vol. 64, no. 1, pp. 110-117, Feb. 2018, doi: 10.1109/TCE.2018.2810480.

[15] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,” Commun. ACM, vol. 30, no. 6, pp. 520–540, 1987,

doi: 10.1145/214762.214771.

[16] A. H. Robinson and C. Cherry, “Results of a prototype television bandwidth compression scheme,” in Proceedings of the IEEE, vol. 55,

no. 3, pp. 356-364, March 1967, doi: 10.1109/PROC.1967.5493.

[17] M. Nelson and J.-L. Gailly, “The Data Compression Book Chapter 1 Introduction to Data Compression,” 2007.

[18] W. Zhan and A. El-Maleh, “A new scheme of test data compression based on equal-run-length coding (ERLC),” vol. 45, no. 1, pp. 91-98,

2012.

[19] S. T. Klein and D. Shapira, “Practical fixed length Lempel–Ziv coding,” vol. 163, pp. 326-333, 2014.

[20] S. Roman, “Introduction to coding and information theory,” vol. 34, no. 09. 1997.

[21] T. C. Bell, J. G. Cleary, and I. H. Witten, “the Canterbury Corpus,” Available online: https://corpus.canterbury.ac.nz/.

https://corpus.canterbury.ac.nz/

