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1. Introduction 

Many educational and economic programs are implemented in our lives that need to be evaluated and studied the usefulness of them to continue 

offering them or stop them, and the feature of taking the individual to treatment made it difficult to use random experiments in evaluating these 

programs, so we resort to regression discontinuous designs, and in this paper, we will deal with Fuzzy regression discontinuity(FRD) 

Specifically, We will estimate the fuzzy regression discontinuous model and compare the kernel functions used in the robust local polynomial 

method and use the mean square error (MSE) as a standard for comparison. 

Used Angrist and Rokkanen fuzzy regression discontinued to study the effects of Boston exam schools for applicants who apply to an area 

below the cut-off point (acceptance point). These estimates indicate that the causal effects of school enrollment on the exam for applicants in 

ninth grade who have values that are very far from the cut-off point (acceptance point) differ slightly from those for applicants with values that 

put them on the fringe of the cut-off point (acceptance point) [1]. 

Sebastian Calonico et al. (2017) studied the effects of bias correction on confidence intervals in the context of endodontic function density and 

local polynomial regression estimation. They derived the optimal error bandwidth and discussed the limitations of bandwidth. It was shown 

that the optimal mean square error bandwidth of the original point estimator provided the lowest mean square error. And they reached important 

results in the experimental work because they indicate that the bias-corrected confidence intervals and the appropriate standard error have 

smaller coverage errors and are less sensitive to adjusting the parameter choices. They reached all these results using simulation [2].  

Data at different sizes (75, 100, 125, 150 ) were simulated, and the fuzzy regression discontinuous model was estimated using different 

bandwidth estimation methods. 

2. Materials and Methods 

2.1. Regression Discontinuity Designs 

The basic idea of regression discontinuous designs (RDD) is that the assignment to a treatment is determined in whole or in part by the value 

of the explanatory variable 𝑋𝑖on on either side of the cut-off point (threshold). It is determined by the explanatory variable because it is not 

affected by treatment. The result is assumed to be a linear function of the variable x except at the cut-off because it will be discontinued at this 

point, and therefore any discontinuity in the conditional distribution (or a property of this conditional distribution such as the conditional 

expectation) of the result is interpreted as a function This explanatory variable at the cut-off value is interpreted as evidence of the causal effect 

of treatment.  
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Nomenclature & Symbols   

RDD regression discontinuous designs FRDD fuzzy regression discontinuous model 

MSE mean square error FRD fuzzy regression discontinuous 

The explanatory variable affects the response variable, so it is measured and its results controlled to determine the causal effect. The objective 

of the regression discontinuous designs is to study the effect of the treatment variable (𝑊𝑖) on the outcome variable (𝑊𝑖). The regression 

discontinuous designs are of two types: 

1. Sharp design: Only people below the threshold will receive treatment and no people above the threshold will receive treatment. 

2. Fuzzy design: It is of two types: 

a. The first type of fuzzy design, in which some of the treatment group did not attend to receive treatment in a randomized trial, and this case 

is called [3]. 

b. The second type of fuzzy design, in which some of the members of the treatment group do not attend to receive treatment and some of the 

members who are not subject to the treatment process (the comparison group) are banned from treatment and they are called (transition 

process) [4]. 

We can write the fuzzy regression discontinuous model (FRDD) as follows: [5] 

 

Yi = α0 + τ𝑊𝑖 + α1𝑘𝑖+ εi                      (1) 

 

Yi: is the response variable (post-trial). 

α0: is the constant limit parameter. 

τ: It is a parameter of the causal effect of the treatment. 

𝑊𝑖: It is the classification variable (ordinal variable) and it is the explanatory variable in this model. 

α1: is the parameter of the explanatory variable  Xi. 

𝑘𝑖: is  (𝑋𝑖 − 𝑐). 

 εi: It is the error term of the model, which is represented randomly and distributed naturally with a mean equal to zero and a variance  𝜎2. 

3. Methods of Estimation 

3.1. Robust Local Polynomial Regression Estimators 

It is one of the nonparametric estimation methods for estimating the bandwidth based on the weighted least squares method, Local polynomial 

estimation methods are preferred over global polynomial methods to avoid many methodological problems caused by the use of the global 

polynomial method such as irregular behavior near boundary points, irrational weight, and overfitting [6]. 

We will estimate the bandwidth using the coverage error optimality method Mean Squared Error Approximation and Optimal Bandwidth [7]. 

ℎ̂𝑀𝑆𝐸(φ̂h) = �̂�𝑀𝑆𝐸 𝑛
−

1

2𝑝+3                  (2) 

�̂�𝑀𝑆𝐸 = (
�̂�𝑀𝑆𝐸

2(𝑝+1)�̂�𝑀𝑆𝐸
2 )

1

2𝑝+3
                      (3)  

Where 𝐵𝑀𝑆𝐸is the bias and 𝑉𝑀𝑆𝐸is the variance. 

And to estimate the variance 
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We will use Silverman's rule to calculate the experimental bandwidth to calculate the intensity and contrast at c [8]. 

ℎ1 = (
4𝑆𝑋

(2𝑝+3)

3𝑛
)

1

(2𝑝+3)

       (17)  

Where 𝑆𝑥 represents the variance of x at the cut-off point. 

If we assume that the degree (p = 1) 

ℎ1 = (
4𝑆𝑋

5

3𝑛
)

1

5
       (18)  

ℎ1 ≈ 1.06𝑆𝑋𝑛−
1

5       (19)  

This depends on the normal kernel function and the normal density function. We will modify it to the uniform kernel function of [-1,1] and a 

normal density function, and we will get 

ℎ1 = 1.84𝑆𝑋𝑛−
1

5       (20)  

𝑆𝑋
2 =

∑(𝑥𝑖−�̅�)2

𝑛−1
      (21)  

And to estimate the bias  

�̂� = 𝑓(𝑐) ((�̂�𝑌𝑟
(2)

− �̂�𝑌𝑙
(2)

) − τ̂ (�̂�𝑊𝑟
(2)

− �̂�𝑊𝑙
(2)

))      (22)  

𝑓(𝑐) =
𝑛1𝑙+𝑛1𝑟

2𝑛ℎ1
       (23)  

o estimate �̂�𝑌𝑟
(2)

,  �̂�𝑌𝑙
(2)

,�̂�𝑊𝑟
(2)

,  �̂�𝑊𝑙
(2)

 we will write a quadratic polynomial regression equation for 𝑌𝑖 and 𝑊𝑖, And the equation for the regression 

of 𝑌𝑖 to the left side when 𝑋𝑖<c will be as follows: 

𝑌𝑖𝑙 = 𝜃0𝑙 + 𝜃1𝑙1𝑋𝑖<𝑐 + 𝜃2𝑙(𝑋𝑖 − 𝑐) + 𝜃3𝑙(𝑋𝑖 − 𝑐)2 + 𝜀𝑖     (24)  

And the equation for the regression of 𝑌𝑖  to the right side when 𝑋𝑖≥c is as follows: 

𝑌𝑖𝑟 = 𝜃0𝑟 + 𝜃1𝑟1𝑋𝑖≥𝑐 + 𝜃2𝑟(𝑋𝑖 − 𝑐) + 𝜃3𝑟(𝑋𝑖 − 𝑐)2 + 𝜀𝑖     (25)  

And the regression equation 𝑊𝑖  for the left side when 𝑋𝑖<c will be as follows: 

𝑊𝑖𝑙 = 𝛿0𝑙 + 𝛿1𝑙1𝑋𝑖<𝑐 + 𝛿2𝑙(𝑋𝑖 − 𝑐) + 𝛿3𝑙(𝑋𝑖 − 𝑐)2 + 𝜀𝑖     (26)  

And the regression equation 𝑊𝑖  for the right side when 𝑋𝑖≥c is as follows: 

𝑊𝑖𝑟 = 𝛿0𝑟 + 𝛿1𝑟1𝑋𝑖≥𝑐 + 𝛿2𝑟(𝑋𝑖 − 𝑐) + 𝛿3𝑟(𝑋𝑖 − 𝑐)2 + 𝜀𝑖     (27)  

And to get �̂�𝑌𝑟
(2)

 we will find the second derivative of the second moment of equation (25): 

�̂�𝑌𝑟
(2)

= 2𝜃3𝑟         (28)  

And to get �̂�𝑌𝑙
(2)

we will find the second derivative of the second moment of equation (24): 

�̂�𝑌𝑙
(2)

= 2𝜃3𝑙         (29)  

And to get �̂�𝑊𝑟
(2)

we will find the second derivative of the second moment of equation (27): 

�̂�𝑊𝑟
(2)

= 2�̂�3𝑟        (30)  

And to get �̂�𝑊𝑙
(2)

we will find the second derivative of the second moment of equation (26): 

�̂�𝑊𝑙
(2)

= 2�̂�3𝑙       (31)  

 

After estimating the bandwidth, we will estimate the rest of the parameters through the weighted least squares method, as follows: 

(α̂0l, α̂1l) =  min
α1

∑ 1(Xi < c)(Yi − α0l −  α1l(Xi − c))
2

Kh (
Xi−c

ℎ
)n

i=1      (32) 

(α̂0𝑟 , α̂1r) =  min
α1

∑ 1(Xi ≥ c)(Yi − α0r −  α1r(Xi − c))
2

Kh (
Xi−c

ℎ
)n

i=1            (33) 

(β̂0l, β̂1l) =  min
β1

∑ 1(Xi < c)(Wi − β0l − β1l (Xi − c))
2

Kh (
Xi−c

ℎ
)n

i=1                      (34) 

(β̂0r, β̂1r) =  min
β1

∑ 1(Xi ≥ c)(Wi − β0r − β1r (Xi − c))
2

Kh (
Xi−c

ℎ
)n

i=1      (35) 

K_h (.): It is a kernel function. [9] 

we can estimate the average causal effect as follows: 

τ̂ =
τ̂𝑌

τ̂𝑊
      (36) 

τ̂𝑌 = �̂�𝑌𝑟 − �̂�𝑌𝑙       (37) 

τ̂𝑊 = �̂�𝑊𝑟 − �̂�𝑊𝑙       (38) 

Two kernel functions will be used:[10] 

1. Epanechnikov kernel 
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𝑘(𝑢) {
3

4
(1 − 𝑢2)                        |𝑢| ≤ 1

0                              𝑜. 𝑤
     (39) 

2. Triangular kernel 

𝑘(𝑢) = {
(1 − |𝑢|)                      |𝑢| ≤ 1

0                                      𝑜. 𝑤
     (40) 

4. Discussion of Results 

4.1. Simulation  

The Monte Carlo experiment will be used to generate the data as follows: 

𝑦𝑖 = 𝑤𝑖 + 𝜀𝑦𝑖
   , 𝑖 = 1, … , 𝑛      (41) 

The treatment is defined as follows: 

𝑤𝑖 = 1{𝜀𝑥𝑖
≤ 0} × 1{𝑥𝑖 < 0} + 1{𝜀𝑥𝑖

≤ 0} × 1{𝑥𝑖 ≥ 0}      (42) 

The errors 𝜀𝑦𝑖
 and 𝜀𝑥𝑖

 are distributed in the common normal distribution as follows: 

(𝜀𝑦𝑖
𝜀𝑥𝑖

) ~𝑁 ((0
0
), (

1 𝜌1

𝜌2 1
))      (43) 

The independent variable has a normal distribution as follows: 

𝑥𝑖~𝑁(0,1)      (44) 

And that 𝜌1 and 𝜌2 are hypothetical values, and if we assume that the covariance and covariance matrix of errors is the same, we will assume 

the values as follows in Table 1. 

Table 1. Values (𝜌1,𝜌2) 

𝝆𝟐 𝝆𝟏 

𝟎. 𝟕𝟓 0.75 

𝟎. 𝟕𝟓 0.5 

𝟎. 𝟗𝟗 0.75 

0.5 0.99 

We will repeat the generation 1000 times and the results will be calculated [11]. 

The program (R- program) was used in writing the program for data analysis, Table 2. 

Table 2. Mean Saquer Error of Model 

N 

𝝆𝟏 = 𝝆𝟐 = 𝟎. 𝟕𝟓 𝝆𝟏 = 𝟎. 𝟓, 𝝆𝟐 = 𝟎. 𝟕𝟓 𝝆𝟏 = 𝟎. 𝟕𝟓, 𝝆𝟐 = 𝟎. 𝟗𝟗 𝝆𝟏 = 𝟎. 𝟗𝟗, 𝝆𝟐 = 𝟎. 𝟓 

Triangular Epanechnikov Triangular Epanechnikov Triangular Epanechnikov Triangular Epanechnikov 

75 0.6027421 0.5909573 0.7869537 0.7707444 0.6027421 0.5909573 0.3539588 0.3472068 

100 0.6160888 0.6062357 0.8049311 0.7932837 0.6160888 0.6062357 0.3627386 0.3563045 

125 0.6198637 0.6155493 0.816737 0.8095917 0.6198637 0.6155493 0.3630471 0.3594187 

150 0.6244743 0.6204156 0.8187302 0.8129859 0.6244743 0.6204156 0.3657737 0.3625651 

5. Conclusion 

We notice from the simulation results that the Epanechnikov Kernel is better than the  Triangular Kernel because it has the least mean squares 

of error. An increase in the mean squares of error occurs when the sample size increases because of the increase in values outside the bandwidth. 
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