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As the global population and economy grow rapidly, the demand for accessible freshwater sources also increases to meet 
the rising consumption. However, this has resulted in several challenges, such as the global water crisis, drought, and 

scarcity of freshwater resources. To address this issue, many farmers worldwide rely on traditional irrigation systems 

despite their high water consumption. Therefore, there is a need to improve water usage efficacy in irrigated farming. This 
can be achieved by leveraging the Internet of Things (IoT) and advanced control technologies for better monitoring and 

managing irrigated farming. This article presents the findings of a comprehensive literature review on irrigation monitoring 

and sophisticated control systems, focusing on recent studies published within the last four years. The latest research on 
precision irrigation monitoring and cutting-edge control methods is highlighted. This study aims to serve as a valuable 

resource for those interested in understanding monitoring and advanced control prospects in the context of irrigated 
agriculture, as well as for academics seeking to stay up-to-date on the latest developments and identify research gaps that 

need to be addressed. 
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1. Introduction 

Due to rising global population levels and the subsequent need for more food production, agriculture now consumes more than 70 percent of 

the world's freshwater resources [1]. Poor water-use efficiency and low production are just two of the problems plaguing the traditional approach 

to irrigation management [2]. As a result, the quantity of precipitation that can be used to irrigate crops is dynamically influenced by global 

warming and climate change [3]. Sustainable targeted irrigation is a critical step toward achieving food security by mitigating the 

unpredictability of rainfall and the impact of water shortages caused by drought. To make up for water lost via evaporation, runoff, and deep 

percolation, accurate irrigation scheduling ensures that water is applied to plants precisely when and where it is required in the correct 

proportions[4]. Management of Irrigation Systems Saving water and the associated indirect energy consumption costs through careful 

monitoring and fine-tuned management will maximize efficiency and save money [5, 6]. Smart agricultural applications have achieved 

controlled monitoring of agricultural processes through the integration of wireless sensor network (WSN) technologies and the Internet of 

Things (IoT). This has resulted in a more significant comprehension of the dynamic changes in weather, soil, and crop conditions during the 

growing season, thanks to the rapid successes of remote sensing. Satellites, sensors on unmanned aerial vehicles (UAVs) [7], and mobile 

irrigation platforms such as lateral and center pivot moving machines are among the various examples of IoT-enabled sensors or equipment 

that may be used to continually pool real-time data from the desired area [8]. Therefore, intelligent decisions can be achieved by employing 

machine learning (ML) models by leveraging the massive amounts of geospatial data that varies over time and can be gathered and stored in 

multiple cloud servers [9]. ML provides a robust and adaptable framework for data-driven decision-making and in-depth system knowledge.  

Together, big data technologies and the ability of edge cloud computing to learn without being explicitly programmed have opened up a new 

way to make sense of and draw conclusions from the huge amounts of data that sensors collect [10]. These technologies will facilitate the 

conversion of raw data into useful information for making choices about irrigation and taking appropriate actions in the field or greenhouse. As 

a result, it saves money, reduces fatigue, and better uses energy and irrigation water [11, 12]. Furthermore, thanks to the development of climate- 

and environment-based paradigms for calculating crop water needs, farmers should be able to easily monitor and visualize the different metrics 

on smartphones or other computing systems to direct their choices, intelligently or manually. In addition, survey research has indicated that 

90% of farmers favor using mobile and online apps to better control their irrigation systems to boost agricultural output [13, 14]. This study 

aims to summarize how AI and wireless sensor networks have been put to use in the irrigation industry. The structure of this paper is as follows: 

The current section provides an introduction. The second section explores the classification of AI techniques in irrigation systems. The third 

section reviews previous works on AI in irrigation.  
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Nomenclature & Symbols   

AIRA Agricultural Irrigation Recommendation and Alert System  IoT                                      Internet of Things 

ANNs                                            Artificial Neural Networks k-NN K-Nearest Neighbor  

ANFIS Adaptive Neuro-Fuzzy Inference Systems  LoRa Long-Range  

CNNs                                   Convolutional Neural Networks LSTMs                                Long Short-Term Memories 

CWSI                            Crop Water Stress Index ML                                     Machine Learning 

CU                                  Coefficient of Uniformity MQTT Message Queuing Telemetry Transport  

DSS                                Decision Support System PSO                                      Particle Swarm Optimization 

DL                                             Deep Learning RF Radio Frequency  

DLiSA Deep Learning for Precision Agriculture  RNNs                                        Recurrent Neural Networks 

ES                                          Expert Systems SIS Smart Irrigation System  

FL                                          Fuzzy Logic SPDT                                        Single Pole Double Throw 

GPRS General Packet Radio Services SWS Smart Watering System 

GSM Global System for Mobile Communication  UAVs                                           Unmanned Aerial Vehicles 

HTTP Hypertext Transfer Protocol USP                                                   Universal Sensor Pole 

IDSS Irrigation Decision Support System  WSN Wireless Sensor Network 

KF-PID Kalman Filter-Proportional Integral Derivative    

    

The fourth section explores the utilization of IoT in irrigation. In the fifth section, the limitations and challenges of implementing AI and IoT 

in irrigation are discussed. The sixth section presents a maturity evaluation, and finally, the paper is concluded in the seventh section. 

2. Classification of Artificial Intelligent in Irrigation Systems   

John McCarthy initially used the phrase "artificial intelligence" in 1956 at the Dartmouth Conference, defining it as the technology and 

engineering of creating intelligent machines or intelligent computer programs [15]. Machines can learn, comprehend, and respond appropriately 

thanks to artificial intelligence technology, which gives them computational intelligence. ML, Fuzzy logic (FL), natural language processing 

(NLP), swarm intelligence (SI), expert systems (ES), deep learning (DL), and computer vision (CV) are all types of artificial intelligence. 

Research into AI algorithms is widespread across many industries, including the agricultural sector [16, 17]. These days, artificial intelligence 

and the IoT are among the most popular innovative technologies used in agriculture. The sensors in the IoT-based smart farming system are 

meant to keep tabs on soil moisture and soil nutrients. The use of AI systems to compute the optimum soil watering needs is also being 

investigated [18]. Farmers may also discover answers to their questions and learn to use cutting-edge technology to boost crop yields. Because 

of this, AI and the IoT will be the two most important technologies in the agricultural sector [15, 19]. Here, we take a look back at the AI 

algorithms that powered the studies presented in this research (see Fig. 1). 

 

Fig. 1. Artificial intelligence techniques 

2.1. Fuzzy logic algorithm 

Irrigation is a complicated system with inherent nonlinearities, making it challenging to formulate the mathematical equation that explains the 

system. A fuzzy controller model could use rules in an "if-then-else" structure instead of a mathematical formula. This model would be based 

on experts' process knowledge [20]. By precisely estimating the quantity of irrigation and controlling the nonlinearity connected with the 

process, the fuzzy logic irrigation control algorithm serves as a valuable control mechanism for assuring irrigation accuracy and enhancing 

water usage efficiency [21]. The designer's familiarity with process (plant) dynamics is crucial to developing effective fuzzy rules and 

demonstrating their practicability via experimentally gathered long-term data, contributing significantly to the controller's efficacy and 

reliability [22]. 
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2.2. Artificial neural network algorithm 

Artificial neural networks (ANNs) are learning algorithms that build on how natural neural systems, such as the human brain, analyze data. The 

billions of neurons in the human brain constantly communicate with one another to process information [10]. ANN's nonlinearity features, 

input-to-output mapping capability, and ability to forecast several dependent variables make its artificial neurons functionally equivalent to the 

human brain's biological neurons [23]. Because of their propensity to learn and adapt to the changing factors impacting irrigation, ANN-based 

controllers have been employed in irrigation control systems [24]. ANN has also been used as an effective tactic for dealing with the challenge 

of developing mathematical models from fundamental principles. Nevertheless, the completeness with which the data input describes the 

system's behavior is crucial to the accuracy of the ANN-based prediction model or controller. Suitable and quality sensors should be used to 

capture data on required parameters, and a suitable sample time should be selected [22]. 

2.3. Machine learning algorithm 

ML is a subfield of AI that enables machines to acquire new skills without being taught directly [25, 26]. ML aims to make computers carry 

out tasks on par with human intelligence by acquiring knowledge through experience [27]. Efficient intelligence-based decision support systems 

for the sustainable and equitable use of water sources in precision irrigation management have been demonstrated through the successful 

application of ML and deep learning models. Historically, farmers have relied on their knowledge and experience to decide whether or not to 

irrigate; however, recent advances in ML have made it possible to include forecasts of weather and soil conditions in irrigation choices. Knowing 

the water requirements, yield, and soil moisture content in advance allows for proactive response and improved management in irrigation 

planning, making prediction a crucial aspect of the process [28]. It is possible to achieve precision in irrigation activities by using ML techniques 

to automatically extract fresh information in the form of generalized decision rules. ML approaches, including federated learning, reinforcement 

learning, supervised learning, and unsupervised learning, have been more prominent in the area of precision irrigation management to address 

difficult problems like categorization and prediction [29]. In specific scenarios, the model can take care of the feature extraction work, a 

significant benefit of DL. DL models have helped many fields and businesses, and agriculture is no exception. DL models are often used in 

agriculture to process images and sounds. Most DL algorithms are ANNs with several hidden layers between the input and output layers. The 

use of supervised and unsupervised learning methods, such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and 

long short-term memories (LSTMs), can help with irrigation decision management [30, 31]. Particle Swarm Optimization (PSO) is a 

computational optimization technique inspired by bird flocking and fish schooling behavior. In an irrigation system, PSO can be used to optimize 

the water allocation process by minimizing water waste while maximizing crop yield. 

PSO works by creating a particle swarm that represents potential solutions to the optimization problem. The position and velocity of every 

particle are modified by considering the particle's individual best solution and the swarm's overall best solution. These updates lead the particles 

to converge toward the optimal solution. In an irrigation system, PSO can optimize the allocation of water resources by determining the ideal 

quantity of water to be applied to each crop, depending on weather, soil moisture, and crop growth stage. Utilizing this technology can result 

in optimized water resource management and increased crop productivity [32]. 

2.4. Expert system algorithm 

ES are computer-based tools that use knowledge and rules to solve complex problems in a specific domain. In an irrigation system [33], an ES 

can provide recommendations on irrigation management based on rules and knowledge about the crop, soil, climate, and irrigation system [34]. 

The ES algorithm in an irrigation system typically involves the following steps [35]. 

▪ Knowledge acquisition: Gather information from experts, scientific research, and other sources to develop a knowledge base of rules and 

information about the crop, soil, climate, and irrigation system. 

▪ Rule-based reasoning: Use rules and logical reasoning to analyze the data collected from sensors and other monitoring tools and make 

recommendations on irrigation management. 

▪ Inference engine: Use an inference engine to apply the rules to the data and generate recommendations based on the current state of the 

crop and irrigation system. 

▪ User interface: Provide a user-friendly interface for farmers and irrigation managers to interact with the system, input data, and receive 

recommendations. 

▪ Feedback: Monitor the results of the irrigation management decisions and use this information to refine the rules and knowledge base over 

time. 

The ES algorithm can help to improve irrigation management by providing accurate and timely recommendations to farmers and irrigation 

managers [36]. By optimizing irrigation management, the ES can help to reduce water waste, improve crop yield, and promote sustainable 

agriculture practices. However, it should be noted that the effectiveness of the ES may be influenced by factors such as data quality, rule 

accuracy, and system maintenance and may need to be calibrated to local conditions [37]. 

2.5. Threshold value algorithm 

It is a simple, easy-to-understand algorithm that can monitor several irrigation-related factors and control the irrigation process. An SPDT 

(single pole, double throw) switch is used to switch between modes. In one setup, the tool is set only to track watering-related data. "Half-active 

mode" describes this state. In other settings, the utility monitors everything and regulates watering depending on relative humidity. "Full Active 

Mode" describes this state. When activated for the first time, the system checks the weather. The rain causes the machine to sleep for about half 

an hour; otherwise, it will connect to the nearest open WiFi network [38]. The general flowchart of the threshold value algorithm is shown in 

Fig. 2. 

2.6. IrrSchedult algorithm 

The irrigation scheduling algorithm IrrSchedult employs the crop water stress index (CWSI) to establish the ideal timing and quantity of water 

required for a crop. The algorithm works by monitoring the crop's water stress level using infrared thermometry and using this information to 

schedule irrigation events. The IrrSchedult algorithm consists of four main steps. First: determine the crop's baseline temperature using infrared 

thermometry. Second: Measure the crop's canopy temperature regularly and calculate the CWSI using the following formula: CWSI = (Tc – 
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Tmin) / (Tmax – Tmin), where Tc is the canopy temperature, Tmin is the minimum temperature, and Tmax is the maximum temperature. Third: use 

the CWSI to determine the crop's water stress level. If the CWSI exceeds a predetermined threshold, the crop is considered under water stress, 

and irrigation is scheduled. Fourth: Calculate the amount of water to be applied based on the crop's water use rate and the time until the next 

irrigation event. Using the CWSI to schedule irrigation events, the IrrSchedult algorithm can help optimize water use, reduce water waste, and 

improve crop yield. However, it should be noted that the algorithm's effectiveness may be influenced by factors such as soil type, weather 

conditions, and irrigation system efficiency and may need to be calibrated to local conditions. Fig. 3  shows a diagram describing the irrigation 

scheduling algorithm "IrrSchedule" [39]. 

2.7. Decision Support System algorithm 

The Decision Support System (DSS) algorithm can help improve irrigation management's efficiency and effectiveness by providing real-time 

information and recommendations to farmers and irrigation managers. By optimizing irrigation management, the DSS can help to reduce water 

waste, improve crop yield, and promote sustainable agriculture practices. The DSS algorithm employs basic constructs such as "IF," "ELSE," 

and "IF-ELSE" to achieve its objective. Data from sensors is used to make decisions; it simplifies the code with increased softness, efficiency, 

and performance [40]. Fig, 4 shows a graph describing the general structure of the DSS algorithm. 
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Fig. 2.  General flowchart of threshold value algorithm 
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3. Previous Works 

With an emphasis on research from the last four years, this portion of the review examines the most recent advancements in intelligent irrigation 

systems. The recent works can be organized according to the adopted algorithm for irrigation systems as follows:  

3.1. Previous works-based ANN 

Using neural networks in irrigation systems allows for improved efficiency and precision in water management, leading to enhanced crop yields 

and resource conservation, as evidenced by various recent studies and developments built upon the ANN framework. Maroufpoor et al. [41] 

used a model to obtain the coefficient of uniformity (CU) values for the four sprinkler types: ZM22, ZK30, LUXOR, and AMBO. It is a reliable 

indicator for measuring water loss. The proposed design comprises a high-pressure electric pump, a water tank, a main pipe, regulator valves, 

a bypass pipe, gauges, a volumetric flow meter, a spray stand, sprinklers, and sample collection containers. ANN uses a coarseness index (nozzle 

sizes), average wind speed, and lateral spacing of the sprinkler to determine CU values. Experimental findings demonstrated that the suggested 

strategy lowers water loss. However, the magnitudes of the statistical indicators of the models used fluctuated significantly between the testing 

phases. Nawandar and Satpute.  

According to the authors [42], a low-cost smart irrigation system was created that utilizes the Internet of Things to enable seamless 

communication and independent functioning of the devices employed in the system. The system consists of three units: An irrigation unit: 

which includes a water source, a water pump, and a pipeline. The control unit: It includes a soil moisture sensor, a moisture and temperature 

sensor, and a universal sensor pole (USP) that controls the sensors, sends data to the server, alerts the irrigation unit, and gets feedback from it. 

Moreover, it makes the decision based on the ANN. Remote monitoring module: It includes a message queuing telemetry transport (MQTT) 

broker that gets the sensor data sent by USP and an HTTP server for remote monitoring. The results showed that the proposed system saves 

water by 67% compared to traditional methods. However, the proposed system must manually enter the plant information and the soil type to 

create an irrigation schedule. 

Kamyshova et al. [43]  Suggested a way to improve agricultural irrigation effectiveness by integrating artificial neural networks and computer 

vision strategies. Eight IP cameras are connected via cable to a digital video recorder (DVR), connected to a laptop with an active internet 

connection on a center pivot irrigation. Build a database of ideal agricultural irrigation parameters and use neural network techniques to build 

dynamic maps of irrigation prescriptions to boost irrigation efficiency (ranging from layered artificial neural networks to pattern recognition 

and convolutional neural networks). Statistical evidence suggests improved efficiency in the use of water for irrigation. However, their 

implementation and maintenance costs are so exorbitant that their use is limited.  

Veerachamy and Ramar [44] developed the Agricultural Irrigation Recommendation and Alert System (AIRA) to aid agriculture workers. The 

technology is designed to help agricultural engineers make the best irrigation choice possible by performing three primary functions. Several 

sensors, including a soil moisture sensor, an air humidity and temperature sensor, and a wind speed and intensity sensor, are used by the system 

to gather information from the field. Then, the gathered data undergoes processing in a hybrid classifier called k-N4, which combines the k-

nearest neighbor (k-NN) algorithm with ANN. The suggested k-N4 algorithm is used to categorize the incoming data, alarm messages are 

created when water level and pressure are low, and a modified PSO algorithm based on gravity and fuzzy clustering is employed to arrive at 

the optimal irrigation option. In contrast, the M-RSA technique encrypts sensitive information while measuring low water levels. The findings 

indicated that the suggested method contributes to efficient water management, better data security, and future financial gains. However, the 

proposed system adopted soil, water, and climate data without any plantations in the field.  

3.2. Previous works-based fuzzy control 

Integrating fuzzy control in irrigation systems enables intelligent and adaptive decision-making processes, resulting in optimized water 

allocation and improved agricultural productivity, as evidenced by several recent studies and advancements built upon fuzzy control techniques. 

Li et al. [45] developed a fuzzy inference system-based real-time irrigation decision support system (IDSS) with relevant software. The purpose 

of the IDSS was to evaluate its effectiveness in supplying guidance for real-time irrigation planning and forecasting the timing of alfalfa 

harvesting. There are three primary components to the IDSS structure: first, the model for alfalfa growth is responsible for determining alfalfa 

height and growth dependent on temperature, which has been used to forecast when to harvest alfalfa. Secondly, the soil water model, 

responsible for soil water (SW) and alfalfa water consumption estimates made using weather prediction information. Thirdly, the fogging 

inference system determines the amount of irrigation using soil moisture and the difference in clover height between the expected and observed 

values. After gathering the data, IDSS uses a Fuzzy inference algorithm to create the irrigation time and volume needed to real-time schedule 

water. According to the results, the IDSS determined the optimal time and amount of irrigation needed for the irrigation system to operate 

efficiently. However, water savings, crop productivity, and spatial variability are not focused on in the development of IDSS. 

Mounir et al. [46] suggested a smart watering system (SWS) for small and medium-sized gardens and fields. The Android app supports it. It 

includes a soil moisture sensor, a light intensity sensor, and an air temperature and humidity sensor. The proposed SWS uses blockchain and 

fuzzy logic to evaluate data and define an irrigation plan. After a decision is made by a fuzzy logic system based on the values of the input 

variables, SWS engages the actuators to carry out irrigation activities, turning ON/OFF the water tunnels periodically. The results of the 

proposed system show that it is a reliable and safe tool for plant irrigation management. However, the mechanism created for watering the 

plants needs manual intervention by the farmer. 

Jaiswal and Ballal [47] introduced an automated irrigation controller based on real-time fuzzy inference. It consists of three units: the sensor 

network, which consists of the water level sensor, the soil moisture sensor, the air temperature sensor, the humidity sensor, and the control unit, 

based on the fuzzy inference system. GPRS-based communication module and Weblogger built on the Laboratory Virtual Instrumentation 

Engineering Workbench (LabVIEW) platform. The fuzzy logic control determines the percentage of valve opening based on the preset values 

of soil moisture, humidity, the water level in the tank, and air temperature. The availability-based tariff (ABT)-based tariff system also enables 

scheduling irrigation at a low-tariff time. The results showed that the proposed method achieves 45% water savings compared to previous 

studies. However, the proposed system is expensive in terms of first-time installation. 
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Krishnan et al. [48] presented an intelligent irrigation system that enables farmers to water their crops With the support of the Global System 

for Mobile Communication (GSM). The system provides signals of acknowledgement regarding its functions, such as soil moisture content, 

ambient temperature, and motor status regarding mains or solar energy. The fuzzy logic controller generates the motor state outputs, calculating 

input factors, including soil moisture, temperature, and humidity. Additionally, the device shuts down the engine to conserve energy when rain 

is forecast. Hand immersion and Drip irrigation were contrasted with the suggested system. The comparison findings show that the suggested 

intelligent irrigation system conserves water and energy.  

Jamroen et al. [49] Presented an intelligent fuzzy-based method for irrigation scheduling using a cheap WSN. The proposed irrigation scheduling 

method considered soil moisture and the crop water stress index. In addition to the wireless transmission of sensor data, the system is based on 

two sensor complexes, the first of which includes an Arduino Uno, soil moisture sensors, infrared temperature sensors, humidity sensors, 

temperature sensors, and light sensors. The second component is the control unit, which includes the Arduino DUE, pump drive unit, pump, 

and thermometer. The experimental results showed the effectiveness of the proposed irrigation scheduling system concerning its accuracy and 

efficiency in terms of water use and energy consumption. Agricultural production increased by 22.58%, water use decreased by 59.61%, and 

electricity use decreased by 67.35%. Although CWSI shows promise, several factors limit its practical use. 

Benyezza et al. [50] Developed a low-cost smart network irrigation system based on zoning using the IoT to reduce water usage and energy 

consumption. The network comprises four regions, each equipped with a sensor node that includes an Arduino nano microcontroller, batteries, 

a soil moisture sensor, a humidity sensor, a temperature sensor, a valve, and a data transceiver unit. Through radio frequency (RF) 

communications, the data collected by the network is transmitted to a Raspberry Pi server. An irrigation decision is made by a fuzzy logic 

controller (FLC), which processes this data. A Human Man Interface (HMI) has been created under the Node-RED server to facilitate the 

monitoring and controlling of irrigation from any location and at any time through the developed system. The results indicate that the proposed 

system achieved water savings of 26.41% and energy consumption reductions of 65.22%. However, it should be noted that providing an exact 

percentage of improvement is problematic because it needs to be evaluated in various aspects. 

In a study by Parrazales et al. [51],  a design for an FLC was proposed to enhance the watering process for rose plants. The system incorporates 

two sensors that measure air humidity and temperature, with the latter and relative humidity serving as the primary control variables. The FLC 

and membership functions were developed using the Mamdani method and a programmable gate array (FPGA) in a domestic greenhouse that 

housed a cluster of rose plants. The results showed that water consumption was reduced to 0.2 liters per week or up to 10.4 liters per year 

compared to traditional manual irrigation. However, the proposed design is a case that cannot be generalized because only one plant species 

and specific variants were used.  

Singh et al. [52] developed an innovative fuzzy logic irrigation control system to automatically control water pumps used in agricultural 

greenhouses and farms. It has an Arduino, a soil moisture sensor, an air humidity and temperature sensor, a DC pump, and solar panels, and it 

is serially connected to a laptop. These sensors, along with the solar radiation taken from the characteristics of the solar panel, provide 

information that the Simulink model uses to control the speed of the water pump, turning it on and off. The results showed that the system 

reduced water usage, reduced costs, and reduced energy consumption. However, the irrigation process is not automated for a variety of plants 

or soils. 

3.3. Previous works-based ANFIS  

The utilization of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) in irrigation systems offers a hybrid approach that combines the 

advantages of neural networks and fuzzy logic, leading to enhanced water management, increased crop yields, and sustainable agricultural 

practices, as evidenced by numerous recent studies and advancements in ANFIS-based research. A fuzzy inference system was developed by 

Mendes et al. [53] that considers the field's geographical variability and uses sparse or ill-defined information on the crop's phenophase from 

satellite photos to determine whether to speed up or slow down the central pivot to the critical choice-making for precise watering. The program 

adheres to the guidelines for variable rate irrigation (VR). The volume of provided water varies as soon as the speed does by management zones. 

Experiments showed the pivot operation's potential efficacy. The rotation speed control, however, does not consider the volume of the water 

layer that will be applied. Water demand will fluctuate in areas where plant growth is variable.  

Kumar and Jayaraman [54] developed an adaptive neural fuzzy inference system (ANFIS)-PEGASIS-based irrigation system at a WSN using 

the IoT consisting of different sensors for monitoring environmental factors, including a light intensity sensor, a temperature and humidity 

sensor, and a soil moisture sensor. The best cluster head (CH) is chosen using a fuzzy inference system (FIS) method. The Sensor Information 

System (PEGASIS) power-efficient aggregation mechanism is used to collect data from irrigation systems, and the irrigation system relies on 

a decision-making strategy based on an ANFIS. The findings demonstrated the merits of the suggested technique in terms of energy utilization, 

packet delivery ratio, system life, throughput, and decreased waste of water. However, it has not been implemented in natural systems using 

sensor parameters, as it has only done simulations.  

Liang et al. [55] utilized an adaptive prediction method to forecast the droplet infiltration effectiveness of sprinkler irrigation. The approach 

was implemented through an ANFIS model, and the irrigation system employed numerous components, including a fluid intensifier pump, 

charging controller, solar cell panel, storage battery, soil moisture sensors, irrigation pipe network, pressure valve, inverter, circuit controller, 

irrigation controller, strainer, check valve, and the main valve. The research findings indicate that maintaining a jetting pressure of 255.2 kPa, 

an impinging angle of 42.5, a water flow rate of 0.67 kg/min, and a continuous irrigation time of 32.4 min can ensure optimal and stable 

effectiveness prediction quality.  

3.4. Previous works-based deep and machine learning algorithms 

Integrating deep learning in irrigation systems enables the extraction of complex patterns from large-scale data, empowering accurate prediction 

and decision-making in water allocation, as demonstrated by several recent studies that have leveraged deep learning approaches. Kashyap et 

al. [56] suggested a smart irrigation system using IoT and deep learning for precision agriculture (DLiSA). The system consists of a rain gauge 

sensor, a soil moisture sensor, a sensor to measure air temperature and humidity, and a data router with Internet connectivity that make up the 

system. The volumetric soil moisture content, irrigation schedule, and water distribution throughout a given area are all predicted by DLiSA 

using a long-term memory (LSTM) network for the next day. For a year and a half, three locations were used to calibrate and test the proposed 
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DLiSA by adjusting the irrigation scheduling function. The results show a reasonably significant water saving with the proposed approach of 

up to 44.28%. However, a predictive irrigation plan that can also anticipate rainfall to maximize water availability using rainfall depths has not 

been developed. 

Sami et al. [57] created an intelligent system based on long-term memory (LSTM) that utilizes predictive temperature, humidity, and soil 

moisture analysis to provide irrigation readings. This system also determines if a physical sensor is malfunctioning or transmitting incorrect 

values due to external factors affecting the system. The proposed solution is currently undergoing testing on a smart irrigation system (SIS) that 

includes physical sensors transmitting data on soil moisture, humidity, and temperature in the field. The physical sensors are replaced with a 

neural sensor, and the results demonstrate that the proposed neural sensor can predict essential values related to the SIS system successfully, 

aiding irrigation decisions and preventing system failures. However, a significant limitation of the deep learning-based neural sensors developed 

in this study is the requirement for large datasets during the training procedure. Additionally, there are few datasets available for farmers to use. 

AlZu’bi et al. [58] developed a smart system that uses WSN to automate agriculture's irrigation process. The system includes a tank, a relay, a 

water pump, several cameras, a photo sensor, a raindrop sensor, an ultrasonic sensor, an Arduino Mega 2560, a breadboard, an ESP8266, a soil 

moisture sensor, a temperature and humidity sensor, and a light sensor. The proposed system aims to teach computers to see and understand 

information in various forms of media. The system relies on digital image processing (DIP) and the Internet of Multimedia Things to analyze 

images and determine when and where to make an irrigation decision. The experiments consisted of two distinct phases. Initially, a feature 

selection process was conducted to filter the relevant features for analysis. The CHI square feature selection method was employed to identify 

the top three features out of the initial set of eight. In the second phase, various classifiers were utilized to evaluate their performance in 

classification. This included the implementation of ANN, support vector machines, and random forests. Additionally, a convolutional neural 

network (CNN) was employed to address the classification problem. Remarkably, the CNN demonstrated superior performance compared to 

the other algorithms utilized in the study, showcasing its effectiveness in solving the classification task. According to the findings, the suggested 

method decreases water consumption and labour expenses. However, the suggested model takes a very long time to train. 

Sanjeevi et al. [59] developed a smart irrigation system called Smart Irrigation System for Precision Agriculture and Farming (SIS-PAF) that 

utilizes the IoT and WSN for agriculture and farming in remote areas. The objective was to demonstrate the accuracy and intelligence of the 

system's devices, which enable decision-making for water management. The proposed system includes an Arduino UNO, humidity sensor, 

temperature sensor, soil feed sensor, ultrasonic sensor, light-dependent resistor sensor, transmitter, LCD, relay, and DC pump. The system is 

automated and operates in two stages: the first stage involves analyzing pre-loaded parameters on the server and making decisions on water 

supply using the ML algorithm. The water pump can also be controlled through web-based and mobile applications. While the proposed 

methodology has been shown to provide better performance for agriculture and water management in experimental settings, it requires real-

time field monitoring to be effective. 

Boursianis, et al. [60] presented a smart irrigation system named AREThOU5A. It uses cutting-edge technologies, including the Internet of 

Things and ML algorithm, for efficient water usage in diverse agricultural settings. The suggested method combines satellite data from the 

International Weather Forecast Services with wireless sensor network data from the field via temperature and soil moisture sensors. The user 

interface subsystem receives the gathered data online and uses it to make irrigation choices. The outcomes of the suggested strategy for 

managing irrigated water in agriculture were good. However, to assess its effectiveness, it must install a rectenna module in different IoT nodes 

inside an agricultural field. 

3.5. Previous works-based other algorithms 

Applying other algorithms, including threshold-based methods, Kalman filtering, PSO, and more, in irrigation systems provides diverse 

approaches for efficient water management, crop yield optimization, and sustainable agricultural practices, as evidenced by numerous recent 

studies and advancements in this field. Borah et al. [38] Created a lightweight, low-cost, and energy-efficient IoT-based irrigation control system 

using the threshold value algorithm. Measuring soil irrigation variables using a moisture sensor, a soil temperature sensor, and a moisture and 

air temperature sensor. In addition, using the ESP-12F8266 as the primary microcontroller for irrigation system tracking and management, 

cloud-based data monitoring and storage are free and open source. A 12-volt lithium-ion battery is charged using solar energy. The results show 

that the proposed threshold value algorithm improves energy efficiency while reducing water loss by up to 60% compared to traditional 

irrigation methods. However, this technique was not used in large fields and was only active during one growing season yearly. 

Arshad et al. [40] Established a Decision Support System (DSS) system using WSN, an Android application, and a long-range (LoRa)-based 

platform to automate environmental parameters to produce optimal crops and reduce water loss. The core components of the proposed model 

are a controlled fertilizer unit, a smart irrigation system, and a smart sensor unit. The smart sensor module includes a temperature sensor, a soil 

moisture sensor, a humidity sensor, a soil conductivity sensor, a nutrient, phosphorous, potassium (NPK) sensor, and a pH sensor, all of which 

stats can be transmitted to the cloud via serial peripheral interface SPI-based communication (LoRa) over the Internet. Using accurate field 

data, smart device decisions can now be made in real time. The results showed that the system helped reach long-term economic goals by 

improving production and reducing water waste in agriculture. However, the prototype is compatible in certain areas with a small range and 

cannot extract parameters from encoder sensors. 

Karunanithy and Velusamy [61] created Efficient Scalable Data Collection Scheme (ESDCS) employing WSNs . to estimate how much water 

with fertilization a crop will need. The smart irrigation system with fertilization consists of several parts: a data collection drone, a 

microcontroller, storage, I/O interfaces, communication modules (Zigbee, WiFi, GSM), soil moisture sensors, air temperature sensors, air 

humidity sensors, sensors for wind speed and sunlight, and water pumps. The study's findings revealed that, in comparison to the existing 

irrigation system, the suggested approach only utilizes 25.08% of the water. System restrictions on high consumption of fertilizers as a result 

of improper fertilizer application and placement. Mannan et al. [39] developed an IoT-based smart irrigation system to decrease labour, energy, 

and water use for irrigation. It is built with various sensors that measure wind speed, water, humidity, temperature, soil moisture, and light to 

gather information about agricultural fields and store it in the cloud to calculate irrigation schedules. The results showed that this system reduced 

labour costs, electricity consumption, and water consumption by up to 18.7%. However, executing in a small agricultural area with various 

crops is not easy. 
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Scarlatache et al. [62]  presented an innovative hybrid method for managing irrigation system pump motors. The primary aim of this approach 

is to minimize the power required to pump 1,000 cubic meters of fluid. Make irrigation decisions with the help of an ES, a computer program 

that can handle large amounts of high-quality data and use that information to mimic the judgment of a human expert. MATLAB was used to 

design and build the hybrid approach, which has a pumping array of five pumps rated at 160 kW. The results indicated that the proposed 

approach is the most effective means of managing irrigation systems in terms of reducing energy use. However, the scenario with all five pumps 

running was not studied because the experimental station did not use all the pumps during the field measurements. 

Abioye et al. [63] demonstrated the practical application of the Kalman filter-proportional integral derivative (KF-PID) controller for a 

subsurface fibrous capillary irrigation system. Using their approach, a substantial decrease in water consumption was observed compared to 

other irrigation methods. The proposed approach involves various modules, including a soil moisture sensor, a water level sensor, a camera, a 

Node MCU, and a Raspberry Pi for the sensor module, a water tank, a pump, and an ultrasonic sensor to measure the water level in the tank for 

the water supply module, and an Internet of Things-based weather station. The data collected from these modules is transmitted to the cloud for 

irrigation decisions. The results indicated that the application of the KF-PID controller in the proposed approach led to a water saving of 56.3% 

hand an increase in productivity. Nevertheless, the capillary movement of water through fibrous materials can lead to the accumulation of salts 

in the cultivation medium, thereby increasing soil salinity.  

Table 1 shows several intelligent irrigation technologies, the types of sensors used, the types of data transmission devices, and the types of 

algorithms used to control the irrigation process, as well as the percentages of water saved and the problems with each of the earlier works.  

Table 1. Comparison between previous works on irrigation systems 

Ref/ year Sensor type 

Method of 

transfer 

sensing data 

Platform 

Method 

of 

irrigation 

Algorithm 

Water 

saving 

(%) 

 

Limitation 

 

[41]/2019 
Weather station 

sensors 
N/A 

Sprinkler water 

distribution 
Sprinkler ANN N/A 

The magnitudes of the 

employed models' 

statistical indicators 

oscillate noticeably 

between the test phases. 

[42]/2019 

Soil moisture 

sensors 

temperature and 

humidity sensor 

MQTT and 

HTTP 

Intelligent 

watering system 

Automatic 

irrigation 
ANN 67% 

The system needs to 

manually enter the 

information of the plant to 

be planted and the soil type 

to create an irrigation 

schedule. 

[45]/2019 
Weather 

websites 
Wireless data 

Real-time 

irrigation 

decision support 

system 

Pivot 

irrigation 
Fuzzy N/A 

water savings, crop 

productivity, and spatial 

variability are not focused 

on in the development of 

IDSS 

[46] / 

2019 

Soil moisture 

sensor, a light 

intensity sensor, 

and an air 

temperature and 

humidity sensor 

Wi-Fi Module 

ESP 8266–01 

Smart watering 

system (SWS) 

Irrigation 

schedule 
Fuzzy N/A 

The mechanism created for 

watering the plants needs 

manual intervention by the 

farmer. 

[53]/ 

2019 

Soil moisture, 

canopy 

temperature, 

and vegetation 

index, 

Satellite 

images 

Variable rate 

irrigation 

Pivot 

irrigation 
ANFIS N/A 

Does not consider the 

volume of the water layer 

that will be applied. Water 

demand will fluctuate in 

areas where plant growth is 

variable. 

[58] / 

2019 

A raindrop 

sensor, an 

ultrasonic 

sensor, a soil 

moisture sensor, 

a temperature 

and humidity 

sensor, and a 

light sensor 

ESP8266 

Efficient 

employment of 

the Internet of 

multimedia 

things 

Automatic  

irrigation 
CNN 

N/A 

 

The suggested model takes 

a very long time to train. 

[54]/ 

2020 

Light intensity 

sensor, a 

temperature and 

humidity 

sensor, and a 

soil moisture 

sensor 

IoT 
Irrigation control 

system 

Automatic  

irrigation 
ANFIS 

N/A 

 

It has not been 

implemented in real 

systems using sensor 

parameters, as it has only 

done simulations. 

[59]/ 

2020 

A humidity 

sensor, a 

Wireless 

connection 

Precision 

agriculture 

Irrigation 

Automatic 
ML 

N/A 

 

It needs real-time field 

monitoring. 
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temperature 

sensor, a soil 

feed sensor, an 

ultrasonic 

sensor, a light-

dependent 

resistor sensor 

[47]/2020 

Soil moisture, 

humidity, air 

temperature, 

and water level 

sensors 

GSM/GPRS 

Fuzzy inference-

based irrigation 

controller 

Drip 

irrigation 
Fuzzy 45% 

The proposed system is 

expensive in terms of first-

time installation. 

 

[61]/ 

2020 

Moisture 

sensors, air 

temperature 

sensors, air 

humidity 

sensors, sensors 

for wind speed 

and sunlight 

Zigbee, WiFi, 

GSM 

Intelligent water 

irrigation and 

fertigation 

Drip 

irrigation 

Travelling 

salesman 

problem 

(TSP) 

25.08% 

System restrictions on high 

consumption of fertilizers 

as a result of improper 

fertilizer application and 

placement 

[48]/ 

2020 

Soil moisture 

sensor 

air temperature 

and humidity 

sensor 

Web server 

using RS232 

data bus 

Smart Irrigation 

System 

Drip 

irrigation 

and 

manual 

irrigation 

Fuzzy N/A 

Future research may 

incorporate IoT-based 

intelligent farming 

technology to help farmers 

and producers reduce waste 

and improve productivity 

across various metrics, 

from the calibre of 

fertilizers used to the 

volume of crops produced. 

[39]/ 

2020 

Measure wind 

speed, water, 

humidity, 

temperature, 

soil moisture, 

and light 

sensors 

Internet of 

Things and 

cloud 

computing 

Intelligent 

Scheduling on 

the Cloud for IoT 

Sprinkler IrrSchedule 18.7%. 

Executing in a small 

agricultural area with 

various crops is not easy. 

 

[38] / 

2020 

Moisture 

sensor, a soil 

temperature 

sensor, and a 

moisture and air 

temperature 

sensor 

ESP-12F8266 

Irrigation 

monitoring and 

control 

Automatic 

flow 

irrigation 

Threshold-

based 

value 

60 %. 

This technique was not 

used on large fields and 

was only active during one 

growing season annually. 

[49] / 

2020 

Soil moisture 

sensors, 

infrared 

temperature 

sensors, 

humidity 

sensors, 

temperature 

sensors, and 

light sensors 

NRF24L01 

Intelligent 

Irrigation 

Scheduling 

System 

Surface 

drip 

irrigation 

Fuzzy 59.61% 

There are limitations to the 

potential use of CWSI in 

practical implementations. 

[55]/2021 
Soil moisture 

sensors 

Wire 

connection 

Sprinkler 

irrigation system 
Sprinkler ANFIS N/A 

There has been no 

evaluation of the suggested 

system at temperatures 

greater than 30 degrees 

Celsius. 

 

[50]/2021 
Soil moisture, 

and temperature 

RF 

communication 

Zoning irrigation 

Smart system 

Drip 

irrigation 

Furrow 

irrigation 

Sprinkler 

irrigation 

Flood 

irrigation 

Fuzzy 26.41% 

It is not easy to give an 

exact percentage of 

improvement because it 

needs to be compared in 

many aspects 
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[56]/ 

2021 

Rain gauge 

sensor, a soil 

moisture sensor, 

a sensor to 

measure air 

temperature and 

humidity 

Internet 
Deep Learning 

Neural Network 

Sprinkler 

irrigation 

DLiSA 

 

44.28 

% 

a predictive irrigation plan 

that can also anticipate 

rainfall to maximize water 

availability using rainfall 

depths has not been 

developed. 

[62]/ 

2021 

N/A 

 

N/A 

 

A Hybrid 

Methodology to 

Irrigation System 

N/A 

 
ES 

N/A 

 

The scenario with all 

pumps running was not 

studied because the 

experimental station did not 

use all the pumps during 

the field measurements. 

[51]/ 

2021 

Air temperature 

and humidity 

sensor 

 

Wire 

connection 

Fuzzy Logic 

Controller for the 

Irrigation 

Micro 

sprinkler 

irrigation 

Fuzzy 
N/A 

 

The proposed design is a 

case that cannot be 

generalized because only 

one plant species and 

specific variants were used. 

[60]/ 

2021 

Soil moisture 

sensors, and 

temperature 

sensors 

Internet and 

LoRaWAN 

Smart Irrigation 

System 

Irrigation 

Automatic 

ML 

 

N/A 

 

To assess its effectiveness, 

it needs to install a rectenna 

module in different IoT 

nodes inside an agricultural 

field. 

[43] / 

2022 
- 

Wireless 

connection 

Phytoindication 

System 

Center 

pivot 

irrigation 

ANN 
N/A 

 

Their implementation and 

maintenance costs are so 

high that their use is 

limited. 

[57]/ 

2022 

Soil moisture 

sensor 

air temperature 

and humidity 

sensor 

and neural 

sensor 

Wireless 

connection 
Sensor Modeling 

N/A 

 

Deep 

learning-

based 

LSTM 

N/A 

 

1. Use large data sets as 

inputs during the training 

procedure. 

2. There are few datasets 

available for farmers to 

work with. 

[40]/ 

2022 

Soil moisture 

sensor, a 

temperature and 

humidity 

sensor, a soil 

conductivity 

sensor, a 

nutrient, 

phosphorous, 

and potassium 

(NPK) sensor, 

and a pH sensor 

LoRaWAN 

Smart 

Agriculture 

Decision Support 

System 

Irrigation 

Automatic 

Decision 

Support 

System 

(DSS) 

N/A 

 

The prototype is compatible 

in certain areas with a small 

range and cannot extract 

parameters from encoder 

sensors. 

[52] / 

2022 

Soil moisture 

sensor 

air temperature 

and humidity 

sensor 

 

Serial 

communication 

Intelligent 

Control of 

Irrigation 

Systems 

N/A 

 
Fuzzy 

N/A 

 

The irrigation process is not 

automated for a variety of 

plants or soils. 

[44]/2022 

 

Soil moisture 

sensor, an air 

humidity and 

temperature 

sensor, and a 

wind speed and 

intensity sensor 

Wireless 

connection 

 

Agricultural 

Irrigation 

Recommendation 

and Alert 

(AIRA) 

N/A 

 

Combine 

k-NN with 

ANN and 

combine 

fuzzy with 

PSO 

N/A 

 

The proposed system 

adopted soil, water, and 

climate data without any 

plantations in the field. 

[63]/2023 

Soil moisture 

sensors 

and water level 

sensors 

Nod MCU 
Capillary 

irrigation system 
Capillary Kalman 56.3% 

Soil salinity increases as 

salts accumulate in the 

cultivation medium due to 

the upward movement of 

water through fibrous 

capillary materials. 
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4. IoT in Irrigation Systems  

The IoT is an ecosystem of connected devices that can collect and share data via the Internet. In an irrigation system, IoT can significantly 

increase efficiency, reduce water waste, and improve crop yield [64]. Here are some ways in which IoT can be used in irrigation systems. Soil 

Moisture Sensors: IoT-enabled soil moisture sensors can be used to monitor the moisture content of the soil in real-time [65, 66]. This allows 

farmers to apply water precisely when needed, avoiding water waste and reducing the risk of overwatering, which can lead to plant diseases 

and stunted growth. Weather Stations: Weather data is critical in determining when to water crops. IoT-enabled weather stations can provide 

accurate, up-to-date temperature, humidity, wind speed, and precipitation information. This information can help farmers decide when and how 

much to water their crops [67]. Automated Irrigation Systems: IoT can automate irrigation systems, saving time and labour costs [68]. An 

automated system can be programmed to turn on and off at specific times or when specific conditions are met, such as when soil moisture levels 

reach a certain threshold. Remote Monitoring: IoT-enabled irrigation systems can be remotely monitored and controlled using a smartphone or 

computer [69]. This allows farmers to monitor their crops and adjust the irrigation system as needed, even when not on the farm [70]. Predictive 

Analytics: By analyzing data collected from IoT sensors and weather stations, predictive analytics can be used to forecast crop water needs. 

This can help farmers plan irrigation schedules and conserve water [66, 71]. 

5. Challenges and Limitations 

This section will discuss the challenges and limitations of implementing WSN, AI, and IoT in irrigation applications. 

5.1. Challenges and limitations of WSN in irrigation 

The use of WSN in intelligent irrigation systems has the potential to significantly improve the efficiency of water usage and crop yields [24, 

72]. However, implementing such systems must address several challenges and limitations [73, 74]. Here are some of them: 

▪ Sensor Deployment: Sensor deployment is one of the most critical factors affecting the performance of the WSN-based irrigation system. 

Proper placement and calibration of sensors are essential for accurate data collection and interpretation. 

▪ Energy Constraints: Wireless sensors require a power source, and batteries have limited lifespans. In agricultural settings, limited access 

to a stable power source can pose a challenge. 

▪ Communication Challenges: Communication in agricultural settings can be challenging due to obstacles such as trees, hills, and other 

environmental factors. This can lead to delays in communication or data loss, which can impact the system's performance. 

▪ Sensor Accuracy and Maintenance: Sensor calibration and maintenance can be time-consuming and require specialized knowledge. 

Sensors must be calibrated regularly to ensure accurate data collection, which can be difficult and expensive to implement in large-scale 

systems. 

▪ Data Processing and Analysis: Collecting data from multiple sensors can result in a vast amount of data that needs to be processed and 

analyzed in real-time. This requires powerful AI algorithms and computing infrastructure, which can be expensive and challenging to 

implement in remote agricultural settings. 

▪ System Complexity: Implementing a WSN-based irrigation system requires expertise in both fields, which may be difficult to find in rural 

agricultural areas. The system also needs to be user-friendly for farmers to use and maintain. 

▪ Cost: Implementing a WSN-based irrigation system, especially for small-scale farmers, can be expensive. The cost of sensors, 

communication infrastructure, and computing resources can be significant barriers to adoption. 

▪ Compatibility with existing irrigation systems: In many cases, WSN-based systems must be integrated with existing irrigation 

infrastructure. This can be challenging due to the different protocols and technologies used in the systems. 

5.2. Challenges and limitations of AI in irrigation 

AI can potentially improve the efficiency and effectiveness of irrigation systems [75]. However, several challenges and limitations must be 

addressed to implement AI in irrigation [76, 77] successfully. Here are some of them: 

▪ Data availability: AI algorithms require large amounts of data to learn and make accurate predictions. However, in many regions, data on 

soil moisture, weather patterns, and crop growth may be limited or unreliable, which can impact the accuracy of the predictions. 

▪ Sensor reliability: Sensors collect data on soil moisture and other environmental factors. However, sensors can be expensive to install and 

maintain, and their accuracy can be affected by temperature, humidity, and electromagnetic interference. 

▪ Power supply: Many irrigation systems are located in remote areas with limited or no access to electricity. AI-powered irrigation systems 

require a stable and reliable power supply to operate effectively. 

▪ Cost: Implementing an AI-powered irrigation system can be expensive, and the initial investment may be difficult to justify for small-scale 

farmers. 

▪ Limited technical expertise: Farmers may lack the technical expertise required to operate and maintain AI-powered irrigation systems, 

which can limit their adoption. 

▪ Unforeseen challenges: AI algorithms can be affected by unforeseen events, such as extreme weather patterns or pests, which can impact 

their accuracy and effectiveness. 

▪ Privacy and security concerns: The data collected by AI-powered irrigation systems may be sensitive, and there are concerns about how 

this data is stored, processed, and shared. There is also a risk of cyber-attacks that could compromise the system's security. 

Addressing these challenges and limitations is essential for successfully implementing AI in irrigation systems. 

5.3. Challenges and limitations of IoT in irrigation 

Several challenges and limitations are associated with using IoT in irrigation systems [78, 79]. Some of them are: 

▪ Data Security: Since IoT devices are connected to the internet, they are vulnerable to cyber-attacks, which can compromise the security of 

the data collected. This is a significant concern for farmers who rely on IoT devices for irrigation management. 
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▪ High Initial Cost: The initial cost of installing IoT devices can be high, which may deter some farmers from adopting this technology. 

However, it is essential to note that the long-term benefits of IoT in irrigation can outweigh the initial cost. 

▪ Technical Complexity: The implementation and maintenance of IoT devices can be technically complex, requiring specialized skills and 

knowledge. This can be a challenge for farmers who may not have the technical expertise required. 

▪ Limited Connectivity: In some rural areas, internet connectivity may be limited or unreliable, making it challenging to use IoT devices 

effectively. 

▪ Data Overload: The large volume of data generated by IoT devices can be overwhelming, making it difficult to interpret and use effectively. 

This requires using advanced analytics tools to derive meaningful insights from the data. 

▪ Power Supply: IoT devices require a continuous power supply to function effectively, which can be challenging in areas with limited or 

unreliable power supply. 

6. Maturity evaluation  

This paper aims to provide a comprehensive overview and analysis of the current state of knowledge regarding the performance evaluation of 

intelligent irrigation systems to promote the sustainable future of irrigated agriculture. The article focuses on the principles, techniques, and 

methodologies employed in assessing the effectiveness of intelligent irrigation projects. The evolution of ideas for evaluating irrigation 

effectiveness and various models used for this purpose is presented. Multiple techniques have been developed and utilized to measure and 

analyze the efficacy of intelligent irrigation systems, including FL, NN, ML, ES, and ANFIS, each of which is discussed in detail. However, 

despite the variety of suggested criteria in the literature for characterizing performance assessment, there is no single unified method for 

comparing the effectiveness of different intelligent irrigation systems. Thus, factors such as irrigation systems, soil types, plant varieties, and 

climate conditions are crucial in determining the appropriate assessment framework and approach to utilize. 

7. Conclusions  

Iraq is among the countries facing severe water shortages, underscoring the importance of having an effective water management system. 

Agriculture, which consumes significant water, is one of the most pressing water waste problems. In response to climate change, there have 

been discussions on implementing water management technologies to ensure adequate water supply for agricultural use. To reduce water 

wastage in irrigation, numerous studies have focused on developing solutions to this issue. This study aims to provide insight into IoT irrigation 

systems for the agricultural sector. We have compiled a list of the most common irrigation water quality, soil, and climate characteristics and 

the most popular wireless technologies and nodes for deploying IoT systems and WSNs in agricultural irrigation. Additionally, we have 

examined the most prevalent AI algorithms utilized in irrigation management planning over the past four years. The ultimate goal is to develop 

an intelligent and efficient irrigation system that conserves water and energy. 
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