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The construction industry is considered a high-risk business. Risk management is one of the most influential methods used 
in construction project management to increase the chances of delivering the project successfully, Risk Assessment (RA) 

is necessary to help organizations identify and mitigate risks; therefore, this paper suggests a framework for developing 

an intelligent RA. There are many Risk Factors (RF) that affect construction projects, and they vary from one country to 
another. In this paper, a questionnaire of forty-one questions about RF was performed; its evaluation criteria are risk 

probability and its impact on cost, time, and quality, this questionnaire relied on several experts’ opinions to identify the 

most common RF affecting Iraqi construction projects. The collected linguistic data were converted into a triangular fuzzy 
number. Qualitative Risk Analysis was performed to assess the priority of the identified risks; while the Adaptive Neuro-

Fuzzy Inference System (ANFIS) was proposed as the intelligent model. The training outcome produced three Fuzzy 
Inference Systems (FISs) models evaluated using the fuzzy designer application and tested using the fuzzy designer app 

and MATLAB Simulink to evaluate their accuracy and reliability. Finally, a set of corrective actions were suggested to 

facilitate the task for users. 
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1. Introduction 

Engineering projects are rarely completed without any foreseeable difficulties or risks, necessitating the researchers to identify, analyse and 

assess them. For a closer look at what the term risk means, we will refer to the definition of [1] for risk as the exposure for losing/gaining or 

the possibility of the losing/gaining event multiplied by the connected importance. Project risk management aims to optimize the likelihood of 

project success by rising the probability and/or impact of positive risks and reducing the probability and/or impact of negative risks [2]. 

From a construction perspective, risks are generally considered as incidences that influence the principal objectives of a particular project (time, 

cost, quality) [3]. Project risk management has gained significant recognition as a critical procedure and capability area within project 

management, its focus on identifying, analyzing, and responding to risks helps organizations improve project outcomes and increase the 

possibility of success [4]. Despite the truth that risks are an adjoining element of construction projects due to the lengthy implementation 

duration, these risks can be managed to reduce their negative impact on project objectives [5]. 

There are many of the Construction Projects' Risk Assessment Methods (CPRAM) were proposed by researchers such as; the TOPSIS approach 

[6, 7], Risk Matrix [8], Monte Carlo Simulation [9], Bayesian network [10], Fault tree method [11], Fuzzy approach [12]. To improve the 

accurateness and efficiency of the results, some researchers have introduced hybrid methods for RA, such as: Fuzzy- Bayesian network approach 

[13], Fuzzy-TOPSIS [14], risk matrix-based Monte Carlo Simulation approach [15], FMCS [16], ANFIS [17]. There are many qualitative and 

quantitative risk assessment analysing tools in various sources. According to [18] the existing CPRAM was categorized into four types: 

indexing, matrix, probabilistic, and fuzzy methods.  

Fuzzy methods are very efficient in modelling the uncertainties encountered in expert judgments and have therefore been frequently and widely 

used as independent or hybridized methods of construction RA for the last two decades [19]. A fuzzy System (FIS) is robust in reasoning, 

inference, and clear representation of knowledge, while ineffective in learning capabilities [20]. On the other hand, artificial neural networks 

have powerful learning abilities while poor reasoning and inference [21]. As a result, the research on the applications of artificial intelligence 

techniques indicated a transition from the use of these traditional stand-alone artificial intelligence methods towards employing hybrid systems 

by integrating two or more different artificial intelligence techniques such as ANFIS [22]. The researchers of [23] employed a fuzzy neural 

network risk analysis technique for construction projects utilizing prefabricated buildings, by leveraging the advantages of both neural and 

fuzzy networks, the method incorporated both qualitative and quantitative analyses to create fault tolerance and enhance adaptive capabilities. 
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Nomenclature & Symbols 

ANFIS Adaptive Neuro-Fuzzy Inference System P Probability of Risk Factor 

CI Cost Impact of risk factor PMI Project Management Institute 

CPRAM Construction Projects' Risk Assessment Methods QI Quality Impact of risk factor 

CRTFN Cost Risk Triangular Fuzzy Number QRTFN Quality Risk Triangular Fuzzy Number 

CRV Cost Risk Value QRV Quality Risk Values 

FIS Fuzzy Inference System RA Risk Assessment 

FL Fuzzy Logic RF Risk Factor 

LVs Linguistic Variables RV Risk Value 

MFs Membership Functions TI Time Impact of risk factor 

NFS Neuro-Fuzzy System TFN Triangular Fuzzy Number 

VH Very High TRTFN Time Risk Triangular Fuzzy Number 

VL Very Low TRV Time Risk Values 

    

The input factors of the neural network were the vector of membership of the qualitative and quantitative indicators of the fuzzy comprehensive 

evaluation of the risk in the sample projects, while the output was the assessment result. After training, programming, and debugging the 

samples, the results showed good agreement with the expected outputs, which confirmed the applicability of the fuzzy neural network in the 

RA process of prefabricated buildings and its feasibility.  

An ANFIS has been built based on collected data of identified risks that affected the construction projects and organized in a systematic 

hierarchical structure to prioritize  and assess risks.  Then a regression model was built to compare and analyse the results, the results showed 

that the fuzzy systems are more reliable [24]. This research objective is to assess the key RFs that can transpire in construction projects and 

create a highly effective intelligent model for assessing them. 

2. Methodology 

The workflow path applied in this research included two phases: 

2.1. Practical phase  

▪ At this phase, the RF affecting construction projects, especially projects inside Iraq, are determined by relying on articles approved in 

international journals, as well as personal interviews with several experts.   

▪ Then, after identifying these factors, they are organized into a questionnaire to conduct a field survey among specialized experts and collect 

their opinions on the extent of the probability for each of the factors individually and the impact of each of them on the triangle of project 

management or what is called the iron triangle (time, cost, and quality).  

▪ Finally, the data collected from the questionnaire feedback is analysed using statistical methods to conclude the information that will be 

used toward the third stage of the study. 

2.2. Simulation phase  

▪ In the last phase of this study, a model will be created using Fuzzy Logic (FL) and the ANFIS to analyse the Linguistic Variables (LVs) 

used in the questionnaire to assess risks and convert them into a mathematical model to assess their impact on construction projects in Iraq, 

based on expert opinions. 

3. Practical Phase 

This phase included a field survey relied on personal interviews with a number of experts specialized in the construction industry for projects 

executed in Iraq, some of whom have a certificate of professional project management (PMP), to organise a questionnaire form consisting of 

forty-one questions about RF categorized into five sections according to the Risk Breakdown Structure (RBS) recommended by the PMI, as 

shown in Fig. 1, the respondents had to select a linguistic variable from a five-scale range to specify the impact criterion's weight, hence 

assigning a score to each risk factor. In qualitative risk assessment the answers of the seventy participants to forty-one questions are reviewed 

regarding the probability of the RF inquired about and the impact of each of them on the project as Cost Impact of risk factor (CI), Time Impact 

of risk factor (TI), and Quality Impact of risk factor (QI). Hence, the denotation of these factors (as risk categorization in RBS displayed in Fig. 

1 are as follows: F1: The unavailability of the documents required to start designing, as well as the unavailability of design maps for the service 

networks passing through the site, F2: The work description is unclear, and so on up to F41: Events and sudden holidays. While risk assessment 

denotation is as follows R01 for risk factor F1, R02 for risk factor F2, and so on up to R41 for risk factor F41. Fig. 2 shows the risk assessment 

for R01. 

4. Simulation Phase 

The presented paper introduces a RA model that employs fuzzy concepts to address epistemic uncertainty. The RA approach comprises three 

stages, which together form the algorithm of the risk model: the preparatory stage, data collection stage, and risk measurement stage. The risk 

owner has to go via these stages to execute the proposed construction projects' risk assessment model by heeding the following procedures: 

▪ #1: The review of risk data, the description of fuzzy LVs, and the selection of their related fuzzy MFs. In this paper, Triangular Fuzzy 

Number (TFN) maps the membership values to maximize clarity. 

▪ #2: This stage involves using an expert opinion questionnaire to identify potential sources of risk and gather information related to risks, 

including their probability and potential impact on project cost, time, and quality. 
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▪ #3: The process entails utilizing fuzzy operations to aggregate data gathered from the questionnaire and calculate the risk value through a 

FIS. 

 

Fig. 1. Risk Breakdown Structure (RBS) 

Project 
Risks

Design and 
Implementation 

Risks

F1: The unavailability of the documents and maps to start designing.

F2: The work description is unclear.

F3: The requirements and specifications are unclear.

F4: Deficiencies or errors in designs.

F5: Delays or changes in designs.

F6: Delayed approval of executive designs.

F7: Inaccurate planning for the path of implementation.

F8: The designed schedule for the project is inaccurate.

F9: Site surveys by the owner are inaccurate.

F10: Errors in estimating quantities.

F11: The work site is in a remote area.

F12: Assigning work to an incompetent contractor.

F13: Poor communication between project parties.

F14: Mismanagement of supply or storage.

F15: Difficulty finding a competent technical staff.

F16: Conflicts between subcontractors.

F17: Using modern technologies without training.

F18: Supply non-conforming materials.

F19: Limited space within the site.

Political Risks

F20: Changes in government policy related to projects in Iraq.

F21: Internal factors such as terrorism, crime rate, sabotage or revolutions.

F22: External factors such as political and armed conflicts.

F23: Changes resulting from bilateral agreements between countries. 

Legal Risks

F24: Changes in country laws. 

F25: Contractual conflicts.

F26: Environmental regulations.

F27: mismanagement of contracts with subcontractors.

F28: Difficulty obtaining work permits.

Financial and 
Economic Risks

F29: Financial difficulties facing the employer.

F30: Delayed the work due to the lack of finances of the contractor.

F31: Exchange rate fluctuation.

F32: Loss due to administrative corruption.

F33: Increase in cost due to environmental limitations.

F34: Change in raw material prices or labor wages.

F35: Delayed payment of financial dues.

F36: Change the cost of tests and quality control. 

External Risks

F37: Weather conditions. 

F38: Natural disasters in some areas of Iraq, such as floods and earthquakes.

F39: Competitors.

F40: Changing the company's management or changing its strategy.

F41: Events and sudden holidays.
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Fig. 2. Risk assessment 

4.1. Preparatory stage 

In the initial stage of the RA process, it is necessary to examine the risk data and determine the LVs. This approach helps quantify the RF when 

exact numerical values are difficult to determine. A linguistic variable is a variable whose values are expressed in natural language words. For 

instance, the probability of a risk incident can be represented using basic expressions which are, "Very Low", "Low", " Medium ", "High", and 

"Very High,". To measure risks, the LVs must be transformed into a corresponding fuzzy number using an appropriate conversion scale. LVs 

are characterized by Fuzzy MFs, which are described within the functional universe of discourse for the variable. Several fuzzy MFs are 

available, such as triangular, trapezoidal, Gaussian, and S-shaped MFs. Nevertheless, triangular and trapezoidal MFs are the most common 

MFs employed in analysing the risks of construction projects. Table 1 displays the TFN for LVs associated with the risk parameters. 

Table 1. TFN of Linguistic Variables 

Linguistic variables Fuzzy numbers 

Very Low (0,0,0.25) 

Low (0,0.25,0.5) 

Medium (0.25,0.5,0.75) 

High (0.5,0.75,1) 

Very High (0.75,1,1) 

To clarify what these LVs and fuzzy numbers mean, a description of them in terms of probability and impact is composed in Table 2. 

Table 2. Descriptions of Linguistic Variables of Risk Probability and Impact 

Linguistic Variables Fuzzy numbers Descriptions of Risk Probability  Descriptions of Risk Impact 

Very Low (0,0,0.25) Very rarely occur The impact is quite negligible 

Low (0,0.25,0.5) Unlikely to occur Little impact 

Medium (0.25,0.5,0.75) Occurrence is usual Moderate impact 

High (0.5,0.75,1) Very likely to occur High impact 

Very High (0.75,1,1) Occurrence is almost inevitable Very high impact 

4.2. Data collection stage 

Acquiring adequate recorded or statistical data for conducting risk analysis in construction projects can be challenging. As a result, many 

existing models rely solely on expert opinions, given the complex nature of construction projects and the unique features of each project. While 

each project is a distinct, one-time undertaking, some risks are common to all projects, while others are specific to a particular project. To 

determine the factors affecting construction projects in Iraq, the research relied on internationally approved articles and expert interviews. These 

factors were then organized into a questionnaire for a field survey among specialized experts. 

4.2.1. Allocating weights 

Experience is a crucial factor in assessing risk criteria regarding probability and impact. Therefore, a weight was placed according to the years 

of experience by repeating the number of answers  for each experience category, thus, as listed in Table 3, the answers of experts with more 

than twenty years of experience were repeated three times, answers from whom experience between 16-20 years were repeated twice, and those 

with experience between 10-15 were repeated once, while the same number of answers received from those with experience less than ten years 

was sufficient. 

Table 3. Allocated Weights 

Experience Years Frequency (FR) Experience Factor (EF) Added Frequency (AF) New Frequency (NF) 

Less than 10 years 7 0 0 7 

Between 10-15 years 22 1 22 44 

Between 16-20 years 19 2 38 57 

More than 20 years 22 3 66 88 

New Frequency Total (NFT) 196 

 4.2.2. Aggregating TFN of P, CI, TI, and QI into set TFN 

This step involves consolidating the risk data collected from various sources, about the individual risk factor probability and its impact on time, 

cost, and quality, into a set TFN. To compute the aggregated data, a fuzzy weighted triangular averaging operator is utilized, which is described 

in equations (1) and (2). The resulting aggregated TFN scores are then utilized as inputs in the subsequent fuzzy inferences phase to assess the 

Cost Risk Value (CRV), Time Risk Value (TRV), and Quality Risk Value (QRV) outputs. Table 4 lists the aggregated TFNs of RV. 
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(2) 

Where:  

𝑁𝐹𝑇 is the new frequency total. 

𝑁𝐹𝑖 is the new frequency based on experience years classification. 

𝐹𝑅𝑖 is the frequency based on experience years classification. 

𝐸𝐹𝑖 is an experience factor based on experience years classification. 

𝐴𝑔𝑔(𝑅𝑛𝑚) is the aggregated value of 𝑅𝑛𝑚, where 𝑅 refers to risk, 𝑛 refers to the number of risk factors (1-41), and 𝑚 refers to risk factor 

parameters (P, CI, TI, and QI). 

𝐸𝑇𝐹𝑁𝑖 is the TFN of experts’ opinion.  

4.3. Risk measurement stage 

The utilization of FL in converting a given input mapping into an output mapping is known as FIS. In the fuzzy inference stage, the aggregated 

TFNs of "Probability of occurrence”, “Impact on Cost”, “Impact on Time”, and “Impact on Quality” are transformed into corresponding fuzzy 

sets of Risk Value (RV). FIS can provide a more nuanced understanding of the potential risks associated with different courses of action by 

creating FL rules that incorporate probability and impact. This can be especially useful in situations where there are multiple risks to consider 

or where there is a high degree of uncertainty surrounding the potential impact of a particular risk. Ultimately, by using a FIS to apply logical 

relations between risk probability and impact using the "AND" rule, decision-makers can make more informed and effective decisions that can 

help mitigate potential risks and protect the interests of their organization. To define the junction between two fuzzy sets, A and B, a binary 

mapping T is used that combines the two MFs using Eq. (3): 

𝜇𝐴⋂𝐵 = 𝑇(𝜇𝐴(𝑥), 𝜇𝐵(𝑥))   (3) 

Cost Risk Triangular Fuzzy Number (CRTFN), Time Risk Triangular Fuzzy Number (TRTFN), and Quality Risk Triangular Fuzzy Number 

(QRTFN), thus, the range for the value of risk become three classes, (L: the lowest value, AV: the average value, and H: the highest value) as 

listed in Table 5. When working with fuzzy numbers, it is necessary to convert them into non-fuzzy numbers through a process called 

defuzzification. There are several defuzzification methods available, and the choice of method will depend on the specific requirements of the 

decision-maker and the situation at hand. Some popular methods include centroid, middle of maximum, maximum of maximum, smallest of 

maximum, bisector, and α-cut. For this particular phase, the centroid method has been selected due to its ease of application relatively and it is 

the most used method in the construction sector. This method can be mathematically described using Eq. (4). These risk values are also listed 

in Table 5Table 5 for each risk factor. 

𝑅𝑉 =
∫ 𝑥𝑓(𝑥) 𝑑𝑥

1

0

∫ 𝑓(x) 𝑑𝑥
1

0

 
 

(4) 

Where f(x) indicates the RV membership function 

Table 4. The Aggregated Data 

Risk Factor P CI TI QI 

(𝒎𝒊𝒏, 𝒎𝒊𝒅, 𝒎𝒂𝒙) (𝒎𝒊𝒏, 𝒎𝒊𝒅, 𝒎𝒂𝒙) (𝒎𝒊𝒏, 𝒎𝒊𝒅, 𝒎𝒂𝒙) (𝒎𝒊𝒏, 𝒎𝒊𝒅, 𝒎𝒂𝒙) 

F1 (0.230, 0.408, 0.633) (0.347, 0.544, 0.753) (0.327, 0.518, 0.727) (0.349, 0.541, 0.748) 

F2 (0.199, 0.372, 0.604) (0.296, 0.485, 0.712) (0.313, 0.502, 0.724) (0.303, 0.495, 0.709) 

F3 (0.215, 0.393, 0.625) (0.291, 0.484, 0.717) (0.311, 0.500, 0.729) (0.327, 0.520, 0.743) 

F4 (0.271, 0.461, 0.696) (0.339, 0.539, 0.770) (0.360, 0.559, 0.781) (0.345, 0.543, 0.768) 

F5 (0.296, 0.493, 0.724) (0.332, 0.530, 0.768) (0.309, 0.507, 0.747) (0.285, 0.479, 0.725) 

F6 (0.273, 0.467, 0.704) (0.354, 0.544, 0.770) (0.253, 0.433, 0.678) (0.238, 0.408, 0.648) 

F7 (0.253, 0.444, 0.678) (0.301, 0.498, 0.720) (0.304, 0.503, 0.732) (0.276, 0.472, 0.706) 

F8 (0.276, 0.462, 0.691) (0.331, 0.526, 0.742) (0.273, 0.461, 0.688) (0.250, 0.434, 0.669) 

F9 (0.219, 0.398, 0.638) (0.291, 0.482, 0.712) (0.268, 0.456, 0.684) (0.247, 0.421, 0.655) 

F10 (0.250, 0.442, 0.679) (0.258, 0.439, 0.676) (0.347, 0.536, 0.743) (0.260, 0.442, 0.674) 

F11 (0.271, 0.451, 0.681) (0.245, 0.429, 0.673) (0.286, 0.467, 0.701) (0.204, 0.378, 0.620) 

F12 (0.316, 0.516, 0.742) (0.421, 0.622, 0.814) (0.395, 0.590, 0.788) (0.433, 0.633, 0.817) 

F13 (0.265, 0.456, 0.692) (0.331, 0.530, 0.758) (0.303, 0.498, 0.732) (0.311, 0.507, 0.735) 

F14 (0.199, 0.378, 0.620) (0.247, 0.426, 0.656) (0.255, 0.442, 0.669) (0.257, 0.439, 0.673) 

F15 (0.232, 0.410, 0.638) (0.276, 0.470, 0.706) (0.275, 0.465, 0.691) (0.347, 0.544, 0.752) 

F16 (0.257, 0.456, 0.692) (0.313, 0.507, 0.734) (0.278, 0.465, 0.697) (0.311, 0.503, 0.729) 

F17 (0.209, 0.388, 0.627) (0.257, 0.439, 0.676) (0.281, 0.470, 0.702) (0.285, 0.474, 0.707) 

F18 (0.247, 0.418, 0.651) (0.313, 0.495, 0.717) (0.336, 0.518, 0.737) (0.391, 0.579, 0.776) 

F19 (0.186, 0.357, 0.595) (0.232, 0.413, 0.650) (0.229, 0.410, 0.651) (0.207, 0.382, 0.625) 

F20 (0.324, 0.523, 0.735) (0.357, 0.556, 0.760) (0.345, 0.533, 0.737) (0.308, 0.493, 0.701) 

F21 (0.317, 0.510, 0.727) (0.388, 0.586, 0.778) (0.390, 0.586, 0.783) (0.342, 0.531, 0.738) 

F22 (0.388, 0.586, 0.778) (0.390, 0.586, 0.783) (0.342, 0.531, 0.738) (0.276, 0.467, 0.686) 

F23 (0.390, 0.586, 0.783) (0.342, 0.531, 0.738) (0.276, 0.467, 0.686) (0.327, 0.520, 0.740) 

F24 (0.342, 0.531, 0.738) (0.276, 0.467, 0.686) (0.327, 0.520, 0.740) (0.322, 0.513, 0.724) 
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F25 (0.276, 0.467, 0.686) (0.327, 0.520, 0.740) (0.322, 0.513, 0.724) (0.298, 0.485, 0.704) 

F26 (0.327, 0.520, 0.740) (0.322, 0.513, 0.724) (0.298, 0.485, 0.704) (0.176, 0.331, 0.569) 

F27 (0.322, 0.513, 0.724) (0.298, 0.485, 0.704) (0.176, 0.331, 0.569) (0.196, 0.365, 0.600) 

F28 (0.298, 0.485, 0.704) (0.176, 0.331, 0.569) (0.196, 0.365, 0.600) (0.214, 0.382, 0.613) 

F29 (0.176, 0.331, 0.569) (0.196, 0.365, 0.600) (0.214, 0.382, 0.613) (0.204, 0.372, 0.609) 

F30 (0.196, 0.365, 0.600) (0.214, 0.382, 0.613) (0.204, 0.372, 0.609) (0.191, 0.355, 0.590) 

F31 (0.214, 0.382, 0.613) (0.204, 0.372, 0.609) (0.191, 0.355, 0.590) (0.237, 0.419, 0.658) 

F32 (0.204, 0.372, 0.609) (0.191, 0.355, 0.590) (0.237, 0.419, 0.658) (0.219, 0.398, 0.632) 

F33 (0.191, 0.355, 0.590) (0.237, 0.419, 0.658) (0.219, 0.398, 0.632) (0.196, 0.362, 0.597) 

F34 (0.237, 0.419, 0.658) (0.219, 0.398, 0.632) (0.196, 0.362, 0.597) (0.227, 0.416, 0.656) 

F35 (0.219, 0.398, 0.632) (0.196, 0.362, 0.597) (0.227, 0.416, 0.656) (0.273, 0.469, 0.707) 

F36 (0.196, 0.362, 0.597) (0.227, 0.416, 0.656) (0.273, 0.469, 0.707) (0.243, 0.418, 0.656) 

F37 (0.227, 0.416, 0.656) (0.273, 0.469, 0.707) (0.243, 0.418, 0.656) (0.234, 0.405, 0.645) 

F38 (0.273, 0.469, 0.707) (0.243, 0.418, 0.656) (0.234, 0.405, 0.645) (0.150, 0.314, 0.561) 

F39 (0.243, 0.418, 0.656) (0.234, 0.405, 0.645) (0.150, 0.314, 0.561) (0.169, 0.334, 0.579) 

F40 (0.234, 0.405, 0.645) (0.150, 0.314, 0.561) (0.169, 0.334, 0.579) (0.169, 0.332, 0.576) 

F41 (0.150, 0.314, 0.561) (0.169, 0.334, 0.579) (0.169, 0.332, 0.576) (0.160, 0.317, 0.563) 

Table 5. Defuzzification to Evaluate RV 

Risk Factors CRTFN 
CRV 

TRTFN 
TRV 

QRTFN 
QRV 

L AV H L AV H L AV H 

F1 0.080 0.222 0.477 0.260 0.075 0.211 0.460 0.249 0.080 0.221 0.474 0.258 

F2 0.059 0.180 0.430 0.223 0.062 0.186 0.437 0.228 0.060 0.184 0.428 0.224 

F3 0.063 0.190 0.448 0.234 0.067 0.197 0.455 0.240 0.071 0.204 0.465 0.246 

F4 0.092 0.248 0.536 0.292 0.098 0.258 0.544 0.300 0.094 0.250 0.534 0.293 

F5 0.098 0.261 0.556 0.305 0.092 0.250 0.540 0.294 0.084 0.236 0.525 0.282 

F6 0.097 0.254 0.542 0.298 0.069 0.202 0.477 0.249 0.065 0.191 0.456 0.237 

F7 0.076 0.221 0.488 0.262 0.077 0.224 0.496 0.266 0.070 0.210 0.478 0.253 

F8 0.091 0.243 0.512 0.282 0.075 0.213 0.475 0.254 0.069 0.201 0.462 0.244 

F9 0.064 0.192 0.454 0.237 0.059 0.181 0.437 0.226 0.054 0.168 0.418 0.213 

F10 0.065 0.194 0.459 0.239 0.087 0.237 0.505 0.276 0.065 0.196 0.458 0.240 

F11 0.067 0.193 0.458 0.239 0.078 0.211 0.477 0.255 0.055 0.170 0.422 0.216 

F12 0.133 0.321 0.604 0.353 0.125 0.305 0.584 0.338 0.137 0.327 0.606 0.357 

F13 0.088 0.241 0.525 0.285 0.080 0.227 0.507 0.271 0.082 0.231 0.509 0.274 

F14 0.049 0.161 0.407 0.206 0.051 0.167 0.415 0.211 0.051 0.166 0.417 0.211 

F15 0.064 0.193 0.450 0.236 0.064 0.191 0.441 0.232 0.080 0.223 0.480 0.261 

F16 0.080 0.231 0.508 0.273 0.071 0.212 0.483 0.255 0.080 0.229 0.505 0.271 

F17 0.054 0.170 0.424 0.216 0.059 0.183 0.440 0.227 0.059 0.184 0.443 0.229 

F18 0.077 0.207 0.467 0.250 0.083 0.216 0.480 0.260 0.097 0.242 0.506 0.281 

F19 0.043 0.147 0.387 0.192 0.042 0.146 0.388 0.192 0.039 0.136 0.372 0.182 

F20 0.116 0.291 0.559 0.322 0.112 0.279 0.542 0.311 0.100 0.258 0.515 0.291 

F21 0.123 0.299 0.566 0.329 0.124 0.299 0.569 0.330 0.109 0.271 0.537 0.305 

F22 0.090 0.243 0.508 0.280 0.089 0.240 0.496 0.275 0.082 0.227 0.483 0.264 

F23 0.034 0.121 0.342 0.166 0.038 0.126 0.349 0.171 0.036 0.123 0.346 0.168 

F24 0.045 0.149 0.388 0.194 0.042 0.141 0.373 0.185 0.037 0.129 0.353 0.173 

F25 0.062 0.195 0.464 0.240 0.055 0.174 0.431 0.220 0.053 0.168 0.423 0.215 

F26 0.025 0.105 0.325 0.152 0.025 0.104 0.323 0.151 0.024 0.100 0.315 0.146 

F27 0.082 0.230 0.492 0.268 0.072 0.210 0.463 0.249 0.072 0.214 0.469 0.252 

F28 0.091 0.251 0.534 0.292 0.075 0.219 0.489 0.261 0.070 0.207 0.473 0.250 

F29 0.138 0.325 0.624 0.362 0.115 0.287 0.575 0.326 0.108 0.273 0.556 0.312 

F30 0.142 0.329 0.615 0.362 0.124 0.302 0.585 0.337 0.116 0.286 0.564 0.322 

F31 0.100 0.257 0.535 0.297 0.130 0.307 0.597 0.345 0.103 0.260 0.541 0.301 

F32 0.123 0.299 0.576 0.333 0.139 0.324 0.605 0.356 0.135 0.321 0.603 0.353 

F33 0.039 0.139 0.376 0.185 0.038 0.138 0.373 0.183 0.034 0.126 0.355 0.172 

F34 0.050 0.169 0.418 0.212 0.062 0.199 0.456 0.239 0.051 0.172 0.420 0.214 

F35 0.146 0.332 0.612 0.363 0.118 0.282 0.553 0.317 0.104 0.260 0.535 0.300 

F36 0.025 0.105 0.320 0.150 0.027 0.111 0.331 0.156 0.029 0.114 0.335 0.159 

F37 0.038 0.139 0.374 0.184 0.031 0.125 0.357 0.171 0.030 0.120 0.344 0.165 

F38 0.015 0.066 0.245 0.109 0.017 0.070 0.252 0.113 0.015 0.066 0.248 0.110 

F39 0.044 0.152 0.394 0.196 0.049 0.162 0.406 0.206 0.044 0.148 0.387 0.193 

F40 0.040 0.154 0.404 0.200 0.040 0.153 0.398 0.197 0.038 0.141 0.382 0.187 

F41 0.056 0.188 0.445 0.230 0.048 0.167 0.417 0.211 0.036 0.140 0.378 0.185 

5. The Neuro-Fuzzy App 

The two input data were the probability of risk for all risk factors and the risk impact on cost or time, or quality all alone. And the output is the 

value of risk in terms of cost, time, and quality of each. All data are trained many times using the Neuro-Fuzzy App until the training error is 
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acceptable. Twenty epochs were enough to let the error go to the study state as shown in Fig. 3, which presents the Neuro-Fuzzy training error 

for cost-risk impact, time-risk impact, and quality-risk impact. The Neuro-Fuzzy app offers the ability to test the trained data by applying the 

input and comparing them with FIS output.Fig. 4 Fig. 4 presents testing data where the blue circles are referring to the training input data, and 

the red stars represent the FIS output. This figure illustrates that the average testing error for CRV was 0.0012794, TRV was 0.0019673, and 

QRV was 0.0018095, by conducting several tests each time with a different number of epochs to train the data until reaching a nearly stable 

error rate, where it was found that twenty epochs were appropriate, these values of the average testing errors are within tolerated range, hence 

this is obvious from the resemblance between the blue circles and the red stars, as displayed in the figure, most of the stars are located in the 

centre of the circles correlated with each. 

 
(a) (b) (c) 

Fig. 3. Neuro-Fuzzy Training Error for (a) Cost Risk, (b) Time Risk, and (c) Quality Risk 

 
(a) (b) (c) 

Fig. 4. ANFIS Testing Data, (a) Cost, (b) Time, and (c) Quality 

5.1. ANFIS model structure 

The ANFIS structure depicted in Fig. 5 consists of two inputs, one output, and ten MFs, with five allocated to each input corresponding to the 

five LVs. Additionally, the figure displays twenty-five fuzzy rules that utilize AND logical operations. The ANFIS output, which denotes the 

risk value, is generated by compiling the outputs of all individual MFs. 

 

Fig. 5. ANFIS Structure 

5.2. Inputs membership function   

Input MFs refer to the representation of input variables in FL system. They are used to define the degree of membership of a given input to a 

particular fuzzy set, which in turn determines the degree to which the input will activate the corresponding rule in the system. Fig. 6 illustrates 

the presence of five MFs assigned to each input, namely, very low, low, medium, high, and very high. 
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Fig. 6. Membership Functions 

5.3. The model rules 

Given that the model has five membership functions (MFs), a total of 52 rules have been taken into account for each 

of the three models: cost, time, and quality. The twenty-five (if-then) rules that are applied for CRM are listed in 

Table 6. The same rules are applied for TRM and QRM TRM 

Table 7. All these rules presented twenty-five output MFs, which will be illustrated in the next section. 

Table 6. CRV ANFIS Rules 

IF ( P is VL ) AND ( CI is  VL ) THEN ( Output is  Out1MF1 ) (1) 

IF ( P is VL ) AND ( CI is  L ) THEN ( Output is  Out1MF2 ) (1) 

IF ( P is VL ) AND ( CI is  M ) THEN ( Output is  Out1MF3 ) (1) 

IF ( P is VL ) AND ( CI is  H ) THEN ( Output is  Out1MF4 ) (1) 

IF ( P is VL ) AND ( CI is  VH ) THEN ( Output is  Out1MF5 ) (1) 

IF ( P is L ) AND ( CI is  VL ) THEN ( Output is  Out1MF6 ) (1) 

IF ( P is L ) AND ( CI is  L ) THEN ( Output is  Out1MF7 ) (1) 

IF ( P is L ) AND ( CI is  M ) THEN ( Output is  Out1MF8 ) (1) 

IF ( P is L ) AND ( CI is  H ) THEN ( Output is  Out1MF9 ) (1) 

IF ( P is L ) AND ( CI is  VH ) THEN ( Output is  Out1MF10 ) (1) 

IF ( P is M ) AND ( CI is  VL ) THEN ( Output is  Out1MF11 ) (1) 

IF ( P is M ) AND ( CI is  L ) THEN ( Output is  Out1MF12 ) (1) 

IF ( P is M ) AND ( CI is  M ) THEN ( Output is  Out1MF13 ) (1) 

IF ( P is M ) AND ( CI is  H ) THEN ( Output is  Out1MF14 ) (1) 

IF ( P is M ) AND ( CI is  VH ) THEN ( Output is  Out1MF15 ) (1) 

IF ( P is H ) AND ( CI is  VL ) THEN ( Output is  Out1MF16 ) (1) 

IF ( P is H ) AND ( CI is  L ) THEN ( Output is  Out1MF17 ) (1) 

IF ( P is H ) AND ( CI is  M ) THEN ( Output is  Out1MF18 ) (1) 

IF ( P is H ) AND ( CI is  H ) THEN ( Output is  Out1MF19 ) (1) 

IF ( P is H ) AND ( CI is  VH ) THEN ( Output is  Out1MF20 ) (1) 

IF ( P is VH ) AND ( CI is  VL ) THEN ( Output is  Out1MF21 ) (1) 

IF ( P is VH ) AND ( CI is  L ) THEN ( Output is  Out1MF22 ) (1) 

IF ( P is VH ) AND ( CI is  M ) THEN ( Output is  Out1MF23 ) (1) 

IF ( P is VH ) AND ( CI is  H ) THEN ( Output is  Out1MF24 ) (1) 

IF ( P is VH ) AND ( CI is  VH ) THEN ( Output is  Out1MF25 ) (1) 

 

5.4. The ANFIS model output 

In an ANFIS, the output of a Sugeno-type fuzzy inference system is a crisp value. The Sugeno FIS uses if-then rules with crisp antecedents and 

linear consequents to model the input-output relationship. The ANFIS model takes input values and applies FL to them to generate a set of 

fuzzy outputs. The fuzzy outputs are then defuzzified using the weighted average method to generate a single crisp output value. 

Thus, the output of an ANFIS model using a Sugeno-type FIS is a single numerical value that represents the system's prediction or estimation 

based on the input data.  

Table 7 listed the output MFs for the coefficients of the linear models for CRM, TRN, and QRM. There is a total of twenty-five MFs presented 

for these outputs. 

6. Model Evaluation 

This research aims to build a highly efficient intelligent engineering model, thus to ensure its accuracy it was evaluated and checked using the 

Fuzzy Logic Designer app and MATLAB Simulink. 

6.1. Fuzzy logic designer 
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The "Fuzzy Logic Designer" app in MATLAB is a graphical user interface that provides tools for designing, training, and testing FL systems. 

The app allows users to easily create FL systems by defining the input and output variables, MFs, and rule bases. The app also provides tools 

for visualizing the FIS, such as membership function plots and response surface plots, which can be helpful for understanding and verifying the 

system's behaviour. 

It provides several training algorithms, including the Hybrid Learning Algorithm and the Hybrid Generalized Learning Algorithm, which 

combine fuzzy clustering and gradient descent optimization, respectively. The app also provides several evaluation and visualization tools, such 

as ROC (Receiver Operating Characteristic) curves and confusion matrices, that can be used to assess the performance of the FL system. 

Overall, the Fuzzy Logic Designer app in MATLAB provides a convenient and user-friendly environment for designing, training, and testing 

FL systems. It is a valuable tool for engineers, researchers, and students interested in working with FL and provides a platform for 

experimentation and learning. 

Table 7. Coefficients of The Linear Combination 

Coefficients                      Weight Coeff. CRM TRM QRM 

Out1MF1 W1 0.1114 0.1244 0.1107 

Out1MF2 W2 0.002852 0.01406 0.000993 

Out1MF3 W3 0 0 0 

Out1MF4 W4 0 0 0 

Out1MF5 W5 0 0 0 

Out1MF6 W6 0.1419 0.1462 0.1418 

Out1MF7 W7 0.1645 0.1644 0.1662 

Out1MF8 W8 0.1847 0.1824 0.1683 

Out1MF9 W9 0.1898 0.1938 0.189 

Out1MF10 W10 0 0 0 

Out1MF11 W11 0.1643 0.1759 0.1704 

Out1MF12 W12 0.1982 0.2009 0.2022 

Out1MF13 W13 0.2326 0.2258 0.2368 

Out1MF14 W14 0.2545 0.2482 0.2568 

Out1MF15 W15 0 0.3151 0.3189 

Out1MF16 W16 0.2007 0.197 0.1991 

Out1MF17 W17 0.2386 0.2427 0.2398 

Out1MF18 W18 0.2671 0.2689 0.2674 

Out1MF19 W19 0.3097 0.2955 0.3119 

Out1MF20 W20 0.3228 0.3204 0.269 

Out1MF21 W21 0 0 0 

Out1MF22 W22 0 0 0.2647 

Out1MF23 W23 0.3206 0.3013 0.3198 

Out1MF24 W24 0.3433 0.3437 0.3392 

Out1MF25 W25 0.4186 0.3758 0.5446 

6.1.1. Fuzzy membership functions 

The MFs for cost, time, and quality impact and their probability are shown in Fig. 7. The input variables are classified into five MFs, and they 

are given as very low, low, medium, high, and very high. The P range is from 0.2089 to 0.5822, the CI range is from 0.3125 to 0.6217, the TI 

range is from 0.3306 to 0.5905, and the QI range is from 0.3174 to 0.6332. 

(a) 

  
(b) 
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(c) 

  

Fig. 7. Membership functions, (a) Cost, (b) Time, and (c) Quality 

6.1.2. Fuzzy rules 

Since each FIS has two inputs with five levels (VL, L, M, H, and VH), twenty-five rules are presented. The twenty-five fuzzy rules for CI, TI, 

and QI, and the test results are displayed in the FIS rule viewer. At this stage, the values of P with CI, TI, and QI were tested, and the results 

were compared with the values of CRV, TRV, and QRV, respectively. 

6.1.3. Fuzzy surface presentation  

The FIS provides the basis for the conceptualization of a fuzzy risk matrix, to present this matrix, here is the surface plot of the three-dimensional 

surface (3D) in Fig. 8 presents the evaluation risk values (CRV, TRV, QRV) based on their P, CI, TI, and QI, respectively. 

   
(a) (b) (c) 

Fig. 8. Fuzzy surface (a) Cost impact, (b) Time impact, and (c) Quality Impact 

6.2. Simulation results using MATLAB Simulink 

MATLAB Simulink is a graphical programming environment for modelling, simulating, and analysing dynamic systems. It provides a graphical 

user interface for building models as block diagrams, which allows for a straightforward representation of complex systems and their 

interactions. MATLAB Simulink is used in this study to validate our fuzzy three models as shown in Fig. 9. Four constant blocks are used to 

represent the probability of risk and its impact on the project in terms of cost, time, and quality. Then three fuzzy controllers are used to simulate 

these three models. Since the fuzzy controller in MATLAB Simulink has a single entity, it is mandatory using a multiplexer to be able to input 

probability data with each of the impacts. Three signals' multiplexers were needed to be used to multiplex the inputs {(P, CI), (P, TI), (P, QI)}. 

The fuzzy outputs are shown in the Simulink three displays; each screen was placed to display the outputs of each effect separately, the first to 

display CRV, the second to display TRV, and the third to display QRV. 

The Simulink is a simulated set of data as an example for ten seconds and the results were as follow: 

The inputs are the probability and its three impacts of the first risk factor F1: {(0.408,0.544), (0.408,0.518), (0.408,0.541)} from Table 4, and 

the outputs: {0.2611, 0.2515, 0.2597}, as CRV, TRV, and QRV respectively. 
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Fig. 9. MATLAB Simulink results 

6.3. The priority of risks 

Prioritizing risks based on qualitative analysis implicates identifying and evaluating potential risks to define the most critical ones. This process 

involves assessing the probability and impact of each risk, once risks are identified and assessed, they can be ranked based on their potential 

impact on the project's objectives. Risks with high probability and high impact should be given the highest priority, while risks with lower 

probability and impact may be considered a lower priority. the prioritization of RF considered in this study is displayed in Fig. 10. Prioritizing 

risks in this way allows project managers to focus their resources on the most critical risks and develop effective risk management response 

strategies. 

 
Fig. 10. The priority of risks 

6.4. Corrective actions 

After conducting a qualitative risk analysis that assessed the priority of risks according to the parameters P, CI, TI, and QI, several corrective 

actions were proposed based on this priority; these actions were formed in a raw state to be the starting point on which the project manager 

relies on the risk response process.  

The value of minimum and maximum risk values are listed in Table 8, for each cost, time, and quality then they have been divided into nine 

levels, based on which the corrective action is chosen; as stated by [25] that, a consensus was reached that a set of nine LVs namely (very low, 

very low-low, low, low-medium, medium, medium-high, high, high-very high, and very high) would adequately encompass the full as a 

spectrum of risk values. Each of these nine LVs was framed by a range of categories to submit the risk values, hence proposing a corrective 

action. 

Table 8. Risk Value Range 

Risk Value-Type Min Risk Value Max Risk Value Risk Range 

CRV 0.109 0.363 0.255 

TRV 0.113 0.356 0.24276 

QRV 0.11 0.357 0.24692 

Table 9 elaborates on the categories numbers and the corrective action for each one based on the level of RV. In Table 10Table 10, The 

corrective category number is listed according to their respective corresponding risk value ranges. 

Table 9. Risk Corrective Action Categories 

Category# Corrective Action Categories RV Level 

1 No corrective steps are necessary. VL 

2 No need to execute any corrective step(s)/accept. VL-L 

Rank 

Numbe

Risk 

Factor
CRV CRV(%)

Risk 

Factor
TRV TRV(%)

Risk 

Factor
QRV QRV(%)

1 F35 0.363 3.52% F32 0.356 3.51% F12 0.357 3.64%

2 F29 0.362 3.51% F31 0.345 3.40% F32 0.353 3.60%

3 F30 0.362 3.51% F12 0.338 3.34% F30 0.322 3.28%

4 F12 0.353 3.42% F30 0.337 3.33% F29 0.312 3.18%

5 F32 0.333 3.23% F21 0.33 3.26% F21 0.305 3.11%

6 F21 0.329 3.19% F29 0.326 3.22% F31 0.301 3.07%

7 F20 0.322 3.12% F35 0.317 3.13% F35 0.3 3.06%

8 F5 0.305 2.96% F20 0.311 3.07% F4 0.293 2.99%

9 F6 0.298 2.89% F4 0.3 2.96% F20 0.291 2.97%

10 F31 0.297 2.88% F5 0.294 2.90% F5 0.282 2.87%

11 F4 0.292 2.83% F10 0.276 2.72% F18 0.281 2.86%

12 F28 0.292 2.83% F22 0.275 2.71% F13 0.274 2.79%

13 F13 0.285 2.76% F13 0.271 2.67% F16 0.271 2.76%

14 F8 0.282 2.74% F7 0.266 2.63% F22 0.264 2.69%

15 F22 0.28 2.72% F28 0.261 2.58% F15 0.261 2.66%

16 F16 0.273 2.65% F18 0.26 2.57% F1 0.258 2.63%

17 F27 0.268 2.60% F11 0.255 2.52% F7 0.253 2.58%

18 F7 0.262 2.54% F16 0.255 2.52% F27 0.252 2.57%

19 F1 0.26 2.52% F8 0.254 2.51% F28 0.25 2.55%

20 F18 0.25 2.43% F1 0.249 2.46% F3 0.246 2.51%

21 F25 0.24 2.33% F6 0.249 2.46% F8 0.244 2.49%

22 F10 0.239 2.32% F27 0.249 2.46% F10 0.24 2.45%

23 F11 0.239 2.32% F3 0.24 2.37% F6 0.237 2.42%

24 F9 0.237 2.30% F34 0.239 2.36% F17 0.229 2.33%

25 F15 0.236 2.29% F15 0.232 2.29% F2 0.224 2.28%

26 F3 0.234 2.27% F2 0.228 2.25% F11 0.216 2.20%

27 F41 0.23 2.23% F17 0.227 2.24% F25 0.215 2.19%

28 F2 0.223 2.16% F9 0.226 2.23% F34 0.214 2.18%

29 F17 0.216 2.10% F25 0.22 2.17% F9 0.213 2.17%

30 F34 0.212 2.06% F14 0.211 2.08% F14 0.211 2.15%

31 F14 0.206 2.00% F41 0.211 2.08% F39 0.193 1.97%

32 F40 0.2 1.94% F39 0.206 2.03% F40 0.187 1.91%

33 F39 0.196 1.90% F40 0.197 1.94% F41 0.185 1.89%

34 F24 0.194 1.88% F19 0.192 1.89% F19 0.182 1.86%

35 F19 0.192 1.86% F24 0.185 1.83% F24 0.173 1.76%

36 F33 0.185 1.79% F33 0.183 1.81% F33 0.172 1.75%

37 F37 0.184 1.79% F23 0.171 1.69% F23 0.168 1.71%

38 F23 0.166 1.61% F37 0.171 1.69% F37 0.165 1.68%

39 F26 0.152 1.47% F36 0.156 1.54% F36 0.159 1.62%

40 F36 0.15 1.46% F26 0.151 1.49% F26 0.146 1.49%

41 F38 0.109 1.06% F38 0.113 1.12% F38 0.11 1.12%
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3 Low urgency to implement any corrective step(s)/accept. L 

4 Implementing corrective step(s) is slightly moderately important / taking mitigation. L-M 

5 
Implementing corrective step(s) is moderately important / taking mitigation or transfer into 

consideration. 

M 

6 
Implementing corrective step(s) has relatively high importance/ taking mitigation or transfer into 

consideration. 

M-H 

7 
Implementing corrective step(s) has high importance/ take avoidance or transfer into 

consideration. 

H 

8 The urgency to implement corrective step(s)/ take avoidance or transfer into consideration. H-VH 

9 Taking corrective step(s) is essential/taking avoidance.  VH 

The common probability and impact matrix was used to classify the risks according to priority so that the appropriate corrective action is taken. 

It appears from Fig. 11 that the area shaded in red is the area with the highest priority and requires effective corrective actions, the area shaded 

in yellow is considered to be of medium priority, and the area shaded in green represents the lowest priority; it may not require any corrective 

action, but it must be noted the importance of continuing to monitor it, as its priority may change with the progress of the project's life. 

Table 10. Category Ranges of Risk Values 

 Corrective Action Categories CRV TRV QRV 

1 Category#1 𝑥 <  0.115 𝑥 <  0.119 𝑥 <  0.116 

2 Category#2 0.115 ≤ 𝑥 <  0.131 0.119 ≤ 𝑥 <  0.134 0.116 ≤ 𝑥 <  0.132 

3 Category#3 0.131 ≤ 𝑥 <  0.150 0.134 ≤ 𝑥 <  0.152 0.132 ≤ 𝑥 <  0.150 

4 Category#4 0.150 ≤ 𝑥 <  0.173 0.152 ≤ 𝑥 <  0.174 0.150 ≤ 𝑥 <  0.172 

5 Category#5 0.173 ≤ 𝑥 <  0.198 0.174 ≤ 𝑥 <  0.198 0.172 ≤ 𝑥 <  0.196 

6 Category#6 0.198 ≤ 𝑥 <  0.227 0.198 ≤ 𝑥 <  0.225 0.196 ≤ 𝑥 <  0.224 

7 Category#7 0.227 ≤ 𝑥 <  0.259 0.225 ≤ 𝑥 <  0.256 0.224 ≤ 𝑥 <  0.255 

8 Category#8 0.259 ≤ 𝑥 <  0.294 0.256 ≤ 𝑥 <  0.289 0.255 ≤ 𝑥 <  0.289 

9 Category#9 𝑥 ≥ 0.294 𝑥 ≥ 0.289 𝑥 ≥ 0.289 

 

Fig. 11. Probability and impact matrix 

The RV membership functions and levels, as well as the range of the corrective action categories, are displayed inFig. 12 Fig. 12, that CRV as 

cost risk value in Fig. 12 (a),  TRV as time risk value in Fig. 12 (b), and QRV as quality risk value in Fig. 12 (c). 

a)  

b)  
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c)  

Fig. 12. Risk corrective action categories, (a) Cost, (b) Time, and (c) Quality 

7. Conclusions and Future Works 

This study introduces new fuzzy models for assessing risk values in construction projects based on their probability and impact. The models 

include three distinct risk assessments for cost, time, and quality, which are disclosed by feedback from industry experts. Notably, this study 

examines a comprehensive set of forty-one RFs commonly specific to construction projects in Iraq. To collect data, a questionnaire was designed 

and distributed to experts across the country, resulting in the participation of seventy individuals. 

The project manager bears the primary responsibility for completing the project within budget, on schedule, and with the required level of 

quality. This creates a significant burden of responsibility and pressure. As such, the fuzzy model's proposed to get implications highly accurate 

in risk value estimation. Adopting this model can assist organizations and project managers in various ways, such as estimating the precise 

construction project duration, accurately pricing tender items, and avoiding RF that may negatively impact project quality. Ultimately, this can 

lead to improved quality and successful project completion. It is noteworthy to mention that the scope of this model is limited, as the study was 

centred around a questionnaire focused on potential risks associated with construction projects in Iraq and how they impact projects within the 

country's specific working conditions. Since each country has its distinct risks and the magnitude of its influence on projects, considering factors 

such as political, geographical, and economic circumstances, the fuzzy model proposed in this study may not be applicable or beneficial in other 

countries.  

As forward-looking, the author recommends the following: 

▪ Utilizing this methodology in diverse projects across different industrial sectors. 

▪ Attempting to apply the proposed fuzzy model approach to construction projects in different countries while considering necessary 

adjustments to align with the conditions of implementing construction projects in each respective country. More risk factors may be added 

according to the project types and country. 

▪ Comparing different methodologies or procedures with the results of the proposed approach. 
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