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In pragmatic courses, graduate students are required to submit programming assignments, which have been susceptible to 
various forms of plagiarism. Detecting counterfeited code in an academic setting is of paramount importance, given the 

prevalence of publications and papers. Plagiarism, defined as the unauthorized replication of written work without proper 

acknowledgment, has become a critical concern with the advent of information and communication technology (ICT) and 
the widespread availability of scholarly publications online. However, the extensive use of freeware text editors has posed 

challenges in detecting source code plagiarism. Numerous studies have investigated algorithms for revealing different 

types of plagiarism and detecting source code plagiarism. In this research, we propose an innovative strategy that combines 
TF-IDF (Term Frequency-Inverse Document Frequency) modifications with K-means clustering, achieving a remarkable 

precision rate of 99.2%. Additionally, we explore the hierarchical clustering method, which estimates an even higher 
precision rate of 99.5% compared to previous techniques. To implement our approach, we utilize the Python programming 

language along with relevant libraries, providing a robust and efficient system for source code plagiarism detection in 

student assignment submissions. 
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1. Introduction 

Plagiarism is a major issue for academics, authors, and educational organizations because it is so simple and inexpensive to obtain so much 

internet content. Textual plagiarism represents one of the most prevalent forms of copyright infringement in academics because papers typically 

incorporate essays, reports, and scientific articles. According to [1, 2], 16% of the originally published papers in major surgical journals may 

be duplicated. Plagiarism, therefore, is defined as the copying of written materials and computer code. Source code plagiarism is defined as 

attempting to pass off another person's source code as one's own while omitting to recognize which precise sections were copied from which 

author [3]. Plagiarism in source code is common in academic programming coursework [4]. To swiftly get good grades, students commonly try 

to replicate other people's work. Plagiarism is more likely to occur in following classes for first-year students who copied in their first course. 

As a result, this illegal behavior must be terminated immediately. A course lecturer may receive erroneous feedback about the course's 

complexity and the performance of students. As a result, detecting plagiarism in coursework is critical [5]. In a large class, personally evaluating 

and identifying similar student-provided solutions to establish if a submission is genuine or plagiarized may be difficult. Inspection by hand is 

time-consuming and inefficient. Use automated code comparison tools like Measure of Software Similarity (MOSS) [6] and JPlag to uncover 

submission combinations that are identical to one another. The most widely recognized automatic code comparing techniques discover 

plagiarism by concentrating just on the submissions' textual or grammatical components. The sensitivity of both of the aforementioned methods 

to code obfuscation [7] creates a considerable hurdle to software-assisted plagiarism detection. Students employ deceptive tactics to obscure 

the code and avoid discovery. There are circumstances where students can fall into the plagiarism occurrences [16], such as:  

▪ The student's readiness to distribute the code to other classmates as the due date for the project draws near. 

▪ When completing a team project, individuals may submit source codes that are identical in every way but vary in vocabulary and style. 

▪ Because only the requirements change from one academic year to the next, prior semester's programs can be utilized.  

▪ Assignments are susceptible to theft via sharing workstations and printers. 

▪ Why in small assignments, numerous learners independently come up with the same layout; this is not plagiarism. 

This research contributes the source code plagiarism detection using different AI and machine learning approaches.  In this section, I introduce 

plagiarism, and it's some of the circumstances where plagiarism can happen in students’ assignments. Section II highlights some of the existing 

systems and approaches used by different researchers. Section III gives brief details about the proposed methodologies, such as k-means  
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Nomenclature & Symbols   

ICT Information and Communication Technology ANTLR ANother Tool for Language Recognition 

TF-IDF Term Frequency-Inverse Document Frequency TP True Positive 

MOSS Measure of Software Similarity TN True Negative 

AI Artificial Intelligence FP False Positive 

PDG Programme Dependence Graphs FN False Negative 

    

 Clustering and hierarchical clustering. Section IV gives results and discusses accuracy measures of different methodologies. However, Section 

V concludes this research by stating the accuracy rate achieved from the proposed methodologies. 

Fig. 1 shows a typical model for the classification of data based on features extracted. In this research, we have proposed a novel model for 

classification that classifies the input source code as plagiarized or non-plagiarized. 

 

Fig. 1. A common process for identifying plagiarism in source code 

2. Existing Systems and Approaches 

Scholars used program similarity metrics such as MOSS [8], JPlag [9], and others to detect plagiarism. To identify plagiarism, a great deal of 

well-known automatic code comparison algorithms use features that consider assignment attributes at the grammatical level or a text-based 

method. 

MOSS is built on the inspecting characteristic of syntactic assignments, which is an algorithm for local fingerprinting [10]. The MOSS 

fingerprint-selecting approach, which selects the lowest possible fingerprint score in a window, is not very exact. The lengthiest common 

sequence is looked after in addition to this fingerprint. The JPlag [11] is another popular tool for detecting plagiarism. Using greedy string 

tiling, JPlag determines the tokenized form of the longest frequent sequences between each pair of submissions. JPlag is similar to MOSS in 

terms of capability. When evaluating a given code, JPlag, on the other hand, skips many crucial elements due to its prioritization of common 

tokenized structural blocks, which include formatting and style.  

Research reported in [12] proposed GPlag, a novel method for plagiarism detection that mines programme dependence graphs (PDGs). A PDG 

displays a procedure's data and control relationships. Because PDGs frequently stay constant throughout the plagiarism process, GPlag is more 

accurate than other methods at identifying plagiarism.   

Authors in [13] stated that lexical, stylistic, comment, programmer's text, and structure factors should be used to describe source code pairs. A 

set of symbols is used by programmers to represent lexical, comment, and n-gram information in source code. Instead of identifying a specific 

programming language, these traits are meant to spot ordinary language aspects that programmers overlook. 

Using a technique devised by [14] utilizing assignment features, course instructors may contrast two submissions. The MOSS similarity score, 

white space, and comment similarity were among the 12 characteristics that they incorporated. On the other hand, these traits are not included 

in the analyses of MOSS or JPlag. Their main objective was to identify plagiarism using these traits as signals. To calculate the relative 

importance of every attribute in its assessment, this system utilized neural network techniques. But their foremost emphasis is on recognizing 

copied pairs inside a single-issue set. 

Research cited in [15] indicated that, in addition to detecting plagiarism in student assignments, the methodologies can also be used in several 

different fields: 

▪ Criminal prosecution - Locating the individual responsible for the virus that those in question used. 

▪ Corporate Litigation - If a staff member violates a contract's no-compete clause, the code's author has to be named.  

▪ Using plagiarism detection to locate the author in cases of academic malfeasance. 
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3. Proposed Methodologies 

This research has been done to classify the source code files submitted by the students as assignments of C++ programming as plagiarized or 

not. The system is developed using a k-means clustering algorithm. The steps to implement k-means clustering for source code plagiarism 

detection are given below; however, it is depicted graphically in Fig. 2. 

The following parts make up the recommended arrangement: 

▪ Examine the documentation for the C++ source code. 

▪ Source code preparation and collection must get underway. 

▪ By making tokens for each file, combining them, and then determining an association between the two (TF-IDF file computation), it is 

possible to generate a matrix of term vs. file. 

▪ Examine the query's C++ source code. 

▪ Restart at step three. 

▪ Go back to step 4 

▪ Sort the files according to how comparable they are to the request by using k-means clustering on the source file for the request. 

▪ The file is questionable if the similarity exceeds the threshold; otherwise, the source file is deemed trustworthy. 

▪ If any occurrences of plagiarism are found, a report must be filed. If not, return to step 1 and try again. 

Yet, Fig. 2 shows the proposed model using k-means clustering. This model classifies the source code file as plagiarized or non-plagiarized. 

 

Fig. 2. A Model for detecting plagiarism in source code is proposed; it is trained with a k-means clustering algorithm [17] after features are 

retrieved from the required files using TFIDF tokens 

3.1. Metrics of the code  

The proposed method examines the input files and ascertains their characteristics after receiving the source codes. TFIDF code metrics are one 

of the proposed model's attributes. Code metrics are just a count of the tokens that are read from the files containing the code that, in this 

example, make up the student assignments that are turned in. These traits are employed to assess the effectiveness, style, system costs, reliability, 

adaptability, and architecture of a programmer's programs [18]. For obtaining these code metrics, several techniques and strategies, including 

those that follow, have been proposed: 

▪ N-grams are collections of n textual elements (words, letters, etc.) from a database. The technique retrieves from articles [19] the average 

number of appearances of substrings of length n. It is a notion from processing natural languages. For example, ‘The United Kingdom’ is 

an example of weighs 2 grams. 

▪ Term Frequency-Inverse Document Frequency (TF-IDF) is its abbreviation [20]. According to their prominence within the body of work, 

words in a document are assigned significance scores. Its primary uses are for data mining and information retrieving. 

▪ A parser generator called ANTLR makes it easier to comprehend and interpret programming languages. To help one understand the 

framework of the code, syntax as well as vocabulary are also removed [21].  

▪ Format changes only involve the addition or elimination of notes and white space. 

▪ Altering the names of variables is an additional typical duplicating technique because it does not jeopardize the program's integrity. 

▪ Modifying Statement - Modifying Statements that don't have consecutive dependency issues, like announcements, is simple. 

▪ Control Replacement - In programming languages, there are numerous replacements for basic codes, such as if/else conditions, etc. [22]. 

▪ Code Insertion - Codes that don't alter the program's basic functionality can be introduced to conceal plagiarism. 

These modifications are not presently supported by the proposed model. K-means clustering, an unsupervised classifier used in machine 

learning, was employed to analyze the recovered attributes. 
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3.2. Machine learning phenomena 

Machine learning refers to the research and development of algorithms that can analyze data for patterns and make predictions. These 

algorithms, rather than strictly conforming to explicit programmer instructions, develop a model using sample inputs to provide data-driven 

predictions or judgments. It is put to use for various computations when it would be too costly to create and implement explicit algorithms [23]. 

Web searches, social media content moderation, and e-commerce site recommendations are just a few of the numerous modern applications of 

machine learning. We presumably use machine learning millions of times every day without even realizing it at this point [24]. As a result of 

machine learning, we may now benefit from accurate speech recognition systems, lightning-fast web searches, autonomous vehicles, and a 

deeper comprehension of the human genome. The type of feedback delivered to the learning system typically categorizes machine learning jobs 

into one of three classes. The application of machine learning algorithms allows for the detection of duplicate source code [25].  Ahmed 

Aldelemy and others [34] have used a k-folding (k=5) cross-validation classifier which resulted in an accuracy of over 92%.  

Here, you'll find the specifics: 

3.2.1. Supervised machine learning 

For a computer to learn, a teacher must first provide it with example inputs and outputs. A universal rule or function that converts inputs into 

outputs is envisaged. This includes classification as well as regression assessment [26].  

3.2.2. Unsupervised machine learning 

Since it is not provided with labels, the learning system must discover how the information is organized on its own. Clustering algorithms are 

also a part of this group of algorithms [3]. 

3.2.3. Reinforcement machine learning 

Software in a changing setting, like a video game, must complete its objective without prior knowledge of its outcome. The program receives 

reinforcement and correction as it works through its problem space [27]. 

3.3. K-Means clustering algorithm 

In data science and machine learning, K-Means Clustering is a methodology for autonomous learning that is employed to tackle clustering 

problems [28]. The K-Means unsupervised learning algorithm categorizes the unstructured dataset using clustering. The total number of pre-

defined clusters that have to be constructed throughout the method is determined by the parameter K; for example, if K=2, two clusters are 

created; if K=3, three clusters are created; and so on [29]. It provides a simple way for swiftly identifying the groups of individuals in a dataset 

that is unlabeled without any previous experience, allowing us to categorize data. Each cluster has a different centroid since the methodology 

is centroid-based.  

The fundamental objective of this approach is to reduce the average separation between individual data points and the clusters to which they 

belong. This strategy begins with an unprocessed dataset and proceeds to classify the data into k categories until no further classifications are 

possible. A fixed value of k [30] should be used in this procedure. The k-means clustering algorithm generally achieves two objectives: 

The k-means clustering algorithm generally achieves two objectives: 

▪ The best value for K center points or centroids is the one that is closest to the center of each data point.   

▪ Clusters of data points are formed when they share a common k-center. 

As a result, there are unique data points with specific features in each cluster. The K-means Clustering Algorithm can be seen in Fig. 3. 

 

Fig. 3. Algorithm of K-means clustering 

3.4. Machine learning and hierarchical clustering  

Hierarchical clustering, also known as hierarchical cluster analysis (HCA), is an additional unsupervised machine learning technique used to 

classify data sets that have no labels.  To visualize the relationship between groups, we create a dendrogram [31] that looks like a tree. Although 
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K-means clustering and hierarchical clustering work in different ways, they may yield identical results. It is not necessary to predict the number 

of clusters like we did with the K-Means algorithm. There are two approaches to using the hierarchical clustering method:    

Agglomerative: Agglomerative is a bottom-up approach that initially treats each data point as its own cluster before combining them into larger 

ones. 

Divisive: The division algorithm is the reverse of the agglomerative algorithm since it employs a top-down strategy. 

Although it has been acknowledged that K-Means Clustering has some limitations. Hierarchical clustering is an important method since it does 

not require a fixed number of clusters and allows for clusters of variable size. It's interesting to note that employing the hierarchical clustering 

procedure does not mandate a specific number of clusters [32]. 

Clustering the datasets is another application of the bottom-up method. This means that the algorithm considers each dataset to be a separate 

cluster before combining the two most comparable ones. This procedure is repeated until a single cluster including all datasets has been created. 

The dendrogram is a graphical representation of this cluster structure. 

The steps which make up the AHC algorithm's operation are as follows [33]: 

▪ Generate a cluster for every data point in Step 1.  Assume that there are N data points; therefore, there will also be N clusters, see Fig. 4. 

 

Fig. 4. Illustration of step 1 

▪ Create a new cluster by joining together two neighboring ones. Therefore, we can expect N-1 clusters to form, see Fig. 5. 

 

Fig. 5. Illustration of step 2 

▪ Generate a single cluster by joining two nearby clusters. There will be N-2 clusters, see Fig. 6. 

 

Fig. 6. Illustration of step 3 

▪ Step 3 should be repeated until only one cluster remains. Accordingly, the following clusters will be obtained, as represented in Fig. 7. 

 

Fig. 7. Illustration of step 4 

▪ If you find that your clusters have merged into one massive cluster, you can use a dendrogram to re-divide them into more manageable 

pieces. 

1. Measuring the distance between two clusters 
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The hierarchical grouping is influenced by how close the two groups are to each other. The clustering criteria are defined by the procedure used 

to measure the distance between two clusters. These kinds of behaviors are denoted as connection approaches. Popular connecting methods are 

listed below [27] and include [28]: 

Single Linkage in Hierarchical Clustering: The cluster's nearest points are divided by the least amount of space. Observe the illustration in Fig. 

8. 

 

Fig. 8. Illustration of Single Linkage 

Complete Linkage in Hierarchical Clustering: The distance between the centers of the two different clusters is at its maximum. It serves as one 

of the well-known linking approaches as it yields more compact clusters than single linkage, see Fig. 9. 

 

Fig. 9. Complete Linkage Illustration 

Average Linkage in Hierarchical Clustering: To calculate the mean separation between clusters, the connection method totals the distance 

between every pair of datasets and divides the result by the total number of datasets. It's also one of the most common methods of linking 

people. 

Centroid Linkage in Hierarchical Clustering: As shown in the graphic in Fig. 10, the linking method is employed to compute the distance 

between cluster centroids. 

 

Fig. 10. Illustration of Centroid Linkage 

According to the scope of the issue or the requirements of the business, it may employ any of the techniques listed above. 

2. Hierarchical clustering and Working of Dendrogram [27] 

HC's memory is mostly employed to keep track of intermediate steps in the form of tree-like diagrams called dendrograms. Each data point in 

the given dataset (on the X-axis) and all of the data points (on the Y-axis) are represented by their respective Euclidean distances on the 

dendrogram plot. The dendrogram's operation is shown in Fig. 11. 

 

Fig. 11. Illustration of Dendrogram Operation 

The following picture shows how clusters get better throughout agglomerative clustering on the left, while the corresponding dendrogram is 

shown on the right [25]. 

▪ As was previously indicated, a cluster is created initially by the joining of data points P2 and P3. This results in a dendrogram with a 

rectangle connecting points (P2) and (P3). The height is determined by the Euclidean distance between the points in the data. 
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▪ In the next step, a dendrogram is generated alongside an established cluster consisting of Phases 5 and 6. The Euclidean distance between 

points 5 and 6 is slightly larger than that between points 2 and 3 and hence has grown. 

▪ Two new dendrograms are created, with points P1, P2, and P3 in one and P4, P5, and P6 in the other. 

▪ Finally, a dendrogram is created from all the data. 

Depending on our requirements, the dendrogram tree structure can be sliced at any level. Fig. 12 depicts a recommended hierarchical clustering-

based source identification approach. 

 

Fig. 12. Projected model using Hierarchical Clustering [25] 

4. Results and Performance Evaluation 

Several criteria are used to evaluate the effectiveness of the proposed model. The proposed system was evaluated using the following metrics 

[16]: cross-validation score, accuracy rate, recall, F1 score, precision, and additional confusion matrices for the entire system and each iteration. 

4.1. Classification accuracy  

This is the most common statistic used to evaluate classification tasks. Precision is measured as the ratio of accurate predictions to all other 

forecasts [8]. 

Accuracy of the system = # Correct Predictions / # Total Number of Predictions  

This is the principle for determining how precise a binary categorization is: 

Accurateness = (TN + TP) / (FP + TP + TN + FN) 

The acronyms True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) are used in this context. However, 

when classes are not evenly distributed, accuracy may not be a reliable metric because it can be relatively high and favor the majority class 

while ignoring the minority class. 

4.2. Confusion matrix 

A confusion matrix [15] is an N-by-N matrix that measures how successfully a model classifies data, where N is the number of classes. The 

matrix [21] compares actual target values and predictions provided by the machine learning model. Fig. 13 provides an illustration of the 

confusion matrix. 

 

Fig. 13. Illustration of a confusion matrix 
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4.3. F-Measure  

F-Measure takes into account both precision and recall when calculating a test's accuracy score. It's a four-way split among FP (False Positives), 

TN (True Negatives), FN (False Negatives), and TP (True Positives). Precision or accuracy can be defined as the proportion of times that 

forecasts turn out to be correct [8].  

p = (TP / (TP +FP)) 

Recall is determined by dividing the number of correct predictions by the total number of actual positives [7].  

r = (TP / (TP +FN)) 

The F-Score [13] is created using the recall and precision weighted average.  

F = ((precision * recall) / (precision + recall)) * 2 

The significance level known as the F1-score (or F-value) is calculated as 

F1Score = Harmonic mean (recall, precision) 

The effectiveness of the proposed system is measured by analyzing student submissions to a Python-based C++ programming competition for 

beginners [30]. There are 44 separate entries, and each one has its own set of ten problems. The initial and amended copies of each student's 

work may be included in a maximum of twenty submissions. This is because of the approximately 880 entries overall.  The source code file 

given in Fig. 14 is a sample code of the C++ program available in the dataset used. This program is a non-plagiarized C++ source file. 

 

Fig. 14. Source code for Example Program 1 

The TF-IDF file generated for the source code program is considered the feature set for the classification. A sample TF-IDF is shown in Fig. 

15. Table 1 shows the details of the dataset used for the experimental setup. 

Table 1. Database Details 

Dataset Problem Sets Submission Language Average LOC 

Programming Contest 10.0 880.0 C++ 1207 

Using the k-means clustering and hierarchical clustering the proposed research has calculated recall, accuracy, F1-score, and precision metrics. 

These metrics were compared with the recall, accuracy, F1-score, and precision values of the existing system mentioned in the literature. These 

metrics are shown in Table 2. For the 90% and 80% training datasets, the proposed approach with hierarchical clustering was demonstrated to 

be stronger with 99.5% accuracy, whereas the system with k-means clustering had a 99.2% accuracy rate. We examined the recommended 

model, where accuracy, recall, and F1-score are all indicators that can be used to assess a model's performance since the correctness of the prior 

approaches hasn't been presented. Table 2 clearly shows that the proposed approach using a hierarchical algorithm outperforms the other systems 

(accuracy 0.995 i.e. 99.5%). 
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Table 2. Comparison of Existing and Proposed Systems  

 K-means Clustering Moss (90%) Moss (80%) Random Forest Algorithm Proposed Approach 

Recall 0.054 0.631 0.819 0.906 0.036 

Accuracy 0.992 - - 0.935 0.995 

F1 Score 0.016 0.773 0.866 0.931 0.018 

Precision 0.009 1.000 0.920 0.960 0.012 

 

Fig. 16 shows different performance results and associated graphs. 

 

Fig. 15. a) Training samples vs. Score curve, b) Accuracy curve 

 

Fig. 16. Python output window 

5. Conclusion 

The proposed system was found to be superior, with 99.2% accuracy, when compared to the existing MOSS system for 90% and 80% training 

sets. As the existing approaches haven't reported the accuracy, we have again compared the proposed model using other evaluation metrics such 

as precision, recall, and F1-score and found it to be superior at these metrics. The K-means clustering method outperforms the Random Forest 

Algorithm. The K-means clustering algorithm has some drawbacks, including a preset number of clusters and a tendency to always try to 

generate clusters of the same size. In this study, we suggest a novel clustering strategy, i.e., hierarchical clustering, that achieves a higher rate 

of success, 99.5% on training. This study suggests a novel clustering strategy, i.e., hierarchical clustering, that achieves a higher rate of success 

at 99.5% on training. The accuracy, recall, and F-measure are a few of the assessment metrics utilized to compare the results of the proposed 

system with existing approaches like the Random Forest Algorithm and MOSS. The work on GUI development using Python for the proposed 

system is ongoing. The researchers will soon publish it online for further research by the research community in the field. 
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