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The identification of vehicle logos in videos and images can be considered a crucial undertaking in several applications, 

such as traffic surveillance systems. The accelerated progress of deep learning has resulted in an increasing need within 

the computer vision field for the development of efficient, robust, and outstanding services across several domains, such 
as the recognition and classification of automobile emblems. This survey begins with an exploration of the escalating 

significance of logos and the associated challenges to their detection. The core problem addressed revolves around the 

necessity for robust methodologies capable of accurately identifying logos in diverse scenarios. The objective of our study 
is to conduct a comprehensive examination of existing deep learning strategies for logo detection, unveil their real-world 

applications, and contribute insights into future challenges and directions in this domain. Our survey uncovers valuable 

insights into publicly available datasets, showcasing their diversity and relevance in evaluating logo detection algorithms. 
An in-depth analysis of deep learning strategies follows, elucidating their strengths and limitations and providing a nuanced 

understanding of their performance metrics. The survey concludes by delineating anticipated challenges and proposing 

future directions, thereby presenting a roadmap for researchers and practitioners seeking to advance logo detection using 
deep learning techniques. 
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1. Introduction 

The recognition of vehicle logos has significant importance in the analysis of vehicle behavior. It serves as a valuable source of supplemental 

information for vehicle identification, a crucial area of study within the field of autonomous systems. Over recent years, the use of surveillance 

information systems has increased, which has accelerated the development of vision-based automobile recognition methods. This technology 

has emerged as a prominent area of study within the domain of automated systems. Vehicle logo recognition is a significant technology in the 

realm of intelligent transportation systems, akin to license plate recognition. 

Vehicle identification in robotic systems may be enhanced by the inclusion of vehicle logo recognition, which offers additional and 

complementary information [1, 2]. To effectively address car-related criminal activities, a growing number of academics have dedicated their 

efforts to developing efficient systems for vehicle logo identification. The prevailing techniques include a two-step process, namely the 

extraction of potential regions for car logos and subsequent logo recognition. Nevertheless, the current vehicle logo recognition techniques still 

face challenges when it comes to detecting diminutive logos and accurately identifying logos in intricate environmental conditions. Hence, the 

identification of diminutive objects poses a key obstacle in the field of computer vision. Nevertheless, logo recognition under challenging 

environmental conditions remains a challenge for the current vehicle logo recognition approaches. Therefore, a significant challenge in 

computer vision is the recognition of tiny objects. Modern detectors often excel at detecting big items, but their detection accuracy for tiny 

objects is frequently poor [3]. 

Classical algorithms provide several tailored components for training a comprehensible and functional detector. Conventional features such as 

edges, invariant moments, and feature points are often used in many applications. Nevertheless, detectors with specifically tailored attributes 

are limited in their ability to effectively identify automobile logos under diverse and demanding environmental circumstances. These variables 

include low light settings, logo tilting, and adverse weather conditions. Deep learning methods for object identification have been the prevailing 

approach in computer vision tasks in recent years. Even though convolutional neural networks are used for the identification of vehicles [4, 5], 

vehicle model recognition [6, 7], license plate recognition [8], compression artefact reduction [9], object detection [10], object tracking [11, 

12], very few studies have made contributions to vehicle logo recognition. Therefore, it is imperative to acknowledge the exceptional 

performance of convolutional neural networks (CNNs) in vehicle logo recognition applications. Several studies [13-15] have enhanced their 

network performance using strategies such as expanding network depth or developing optimized architectures.  
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The realm of vehicle logo detection confronts multifaceted challenges rooted in the real-world dynamics of varying logo sizes and diverse 

contextual backgrounds. The diminutive size of logos on vehicles often leads to difficulties in their identification, particularly when they are 

overshadowed by other elements in the visual scene. Moreover, the diverse backgrounds against which logos must be discerned introduce 

complexities in segmentation and recognition, further complicating the accurate identification of logos. Complexities in segmentation and 

recognition, further complicating the accurate identification of logos. Existing methodologies, while showcasing advancements, may encounter 

limitations when dealing with these intricacies. Therefore, a critical examination of these challenges becomes imperative to advance the field 

and devise robust solutions capable of handling the complexities inherent in vehicle logo detection scenarios. 

Our survey paper significantly contributes by addressing a notable research gap in the field of vehicle logo identification, specifically within 

deep learning applications. Despite the widespread use of deep learning in this area, a comprehensive assessment has been lacking. Our study 

uniquely focuses on recent advancements in deep learning methodologies tailored for vehicle logo identification. The distinctiveness of our 

contribution lies in a thorough examination and critical discourse on the current state of research in vehicle logo identification, encompassing 

datasets and evaluation metrics. Additionally, we meticulously investigate prospective research obstacles, pinpointing unresolved challenges in 

vehicle logo detection. Our objective is to provide a unique viewpoint that enhances understanding of deep learning-based vehicle logo 

identification and encourages further investigation into unresolved issues. By outlining prospective research obstacles and identifying future 

avenues, our survey accelerates progress in the broader area of vehicle logo research, serving as a guiding resource for researchers and inspiring 

advancements in this field. 

The subsequent sections of this work are structured in the following manner: In the second section, an extensive examination and categorization 

of the existing literature on vehicle logo detection is conducted. In the third section, we examine the datasets used for public vehicle logo 

detection. In the fourth section, we discuss the performance evaluation metrics. In the fifth section, we will examine the results and discuss 

them. The conclusion of the research is offered in the final section. 

2. Previous Work 

With a focus on research done in the previous four years, this portion of the paper examines current advancements in the field of vehicle logo 

detection and categorization. The recent works can be organized according to the one- and two-stage object detection for vehicle logo detection 

and classification as follows: 

2.1. One-step algorithms 

Single-stage object detection algorithms represent a pivotal advancement in computer vision, streamlining the complex task of identifying and 

localizing objects within an image in a single pass. Unlike two-stage methods that involve region proposal and subsequent classification, single-

stage algorithms excel in efficiency by combining these steps into a unified process. This streamlined approach significantly reduces 

computational overhead, making them well-suited for real-time applications. The approach proposed by Yin et al. [16] involves using YOLOv2 

for logo recognition. The proposed technique encompasses the integration of automated testing methods across many levels, the fusing of 

channels at numerous levels, and the use of separable convolution algorithms. The suggested methodology for vehicle identification has several 

advantages when compared to the standard technique that depends on manual feature extraction by humans. The benefits included within this 

particular setting are self-directed learning skills and the capacity to directly input visual representations. Moreover, it facilitates the placement 

and identification of automotive emblems. The experimental findings indicate that the model has remarkable stability when exposed to low-

resolution circumstances, fluctuations in lighting, rotational transformations, and interference from noise. Furthermore, the model demonstrates 

exceptional levels of accuracy, recall, and real-time performance. The recall rates observed after the completion of training were found to be 

99.7%, indicating a notable level of accuracy in the identification of pertinent circumstances. The mean average precision (mAP) was 

determined to be 99% in this study. 

Shuo Yang et al. [17] introduced a comprehensive dataset, named 'VLD-30', specifically designed for addressing the vehicle logo identification 

challenge. Vehicle logo detection is extensively employed in the field of Intelligent Transport Systems, particularly in applications such as 

vehicle monitoring. Regarding the object identification method in deep learning, the inclusion of a high-quality dataset has the potential to 

enhance its resilience. The dataset exhibits a notable degree of dependability due to the inclusion of comprehensive analyses on several aspects. 

To validate the performance of the dataset, common target identification algorithms like Faster-RCNN and YOLO achieved mAP of 87.5% and 

85.3%, respectively. Linghua Zhou et al. [18] introduced a novel methodology for the recognition of automobile logos in the presence of motion 

blur. This approach combines the techniques of VL-YOLO and Filter-DeblurGAN. The Filter-DeblurGAN model incorporates a decision-

making process that assesses the level of blurriness in an image to decide whether deblurring is necessary. Additionally, it can restore clarity to 

photographs of varying resolutions. The Filter-DeblurGAN algorithm addresses the limitation of DeblurGAN by including a judgment process 

and mitigating the issue of excessive resolution degradation. The deployed model achieved a mAP score of 98.1% when assessed on the LOGO-

17 dataset. The research findings show that the suggested technique outperforms currently used approaches in recognizing objects inside a 

motion-blurred environment with a considerable degree of accuracy. 

Xiaoli Jiang et al. [19] presented a more effective method for identifying car logos based on YOLOv4, aiming to address the issue of poor 

recognition rates resulting from tiny objects of several kinds and a complex backdrop around vehicle logos. To include more superficial 

information, a superficial output layer was introduced to modify the neck architecture of the initial model. The integration of surface-level 

spatial data with in-depth semantic data mitigated the degradation of fine-grained characteristics in the identification of automobile logos. To 

enhance the rate at which tiny object features are reused, the integration of the CSPDenseNet module into the Darknet53 framework was 

Nomenclature & Symbols   

CNN Convolutional Neural Network TP True Positive 

AP Average Precision TN True Negative 

mAP Mean Average Precision FP False Positive 

IoU Intersection Over Union FN False Negative 
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implemented. In comparison to the initial model applied to the VLD-45 dataset, the enhanced vehicle logo recognition model exhibited a 5.72% 

improvement in mean average precision (with intersection over union ranging from 0.5 to 0.95) and a 5.58% increase in recall. 

Li Song et al. [20] used the YOLO-T model and made use of the correlation inside the car space structure to develop an innovative approach 

for vehicle logo detection. The proposed approach incorporates several fields of reception and establishes a detection framework that operates 

at various scales and is well-suited for visual landmark identification tasks. They employed a method of properly identifying and extracting the 

region of interest relevant to the automobile logo by taking advantage of the spatial correlation between the car logo and the lights to decrease 

the influence of background interference. The research results demonstrate that the approach we have presented attains a notable detection 

accuracy of 98.5% in terms of mAP, surpassing the performance of current car logo identification techniques. 

Xiao Ke and Pengqiang Du [21] proposed three data augmentation procedures in their study, including tiny frame segmentation, Gaussian 

distribution segmentation, and cross-sliding segmentation. These strategies aim to enrich the dataset, enlarge the logo region, and improve the 

variety of logo positions. The experimental findings show that these strategies exhibit superior performance in terms of feature representation 

and overall enhancement compared to standard approaches. The F1 score of the suggested technique inside the YOLO framework is determined 

to be 77.65%, accompanied by a precision value of 92.95%. Conversely, within the Faster R-CNN framework, the F1 score is observed to be 

77.99%. The findings of this study demonstrate the efficacy of the suggested methodologies in accurately detecting and identifying car logos 

within complex visual environments. Junxing Zhang et al. [22] introduced a methodology known as the multi-scale vehicle logo detector, which 

is built upon the principles of the single-shot multi-box detector (SSD). This approach achieves superior outcomes compared to existing 

detection techniques through the manipulation of preset box characteristics, modification of pre-training strategies, and adjustment of network 

architecture. The empirical results presented support the assertion that the proposed technique provides improved performance in the area of 

multi-scale automotive logo identification. The identification of car emblems with a wide range of sizes has a high level of clarity, resulting in 

a significant improvement in detection accuracy when compared to other conventional methods. The SVLD technique demonstrates a 3.1% 

enhancement compared to traditional approaches. Furthermore, it achieves 84.8% of Map [23]. 

Shuo Yang et al. [24] suggested a tweak to the YOLOv3 model to attain a trade-off between accuracy and speed while detecting vehicle logos 

in intricate environments. Additionally, they developed a novel dataset called VLD-30 specifically tailored for this purpose. In the VLD-30 

dataset, the suggested technique produced a mAP of 89.9%. The experimental findings provide evidence that the suggested data-training strategy 

is beneficial and that the improved YOLOv3 algorithm is proficient in swiftly and accurately detecting vehicle logos in intricate environments. 

Shuo Yang et al. [25] introduced a novel dataset named VLD-45 that encompasses a multi-class vehicle logo detection (VLD) task. The dataset 

comprises a collection of 45,000 photos, whereby each image contains 50,359 unique items that may be classified into 45 separate categories. 

This research offers new perspectives on the difficulties related to the identification of small-scale items and the recognition of logos. The 

VLD100K-61 dataset's vehicle logos were identified and classified using the YOLOv5s-IoAv model, which was proposed by Xiaohui Shi et al. 

[23]. To enhance the precision of car logo recognition, a recommended approach for enhancing the regression of bounding boxes uses an 

intersection over average (IoAverage) loss. The model achieved a mAP0.5 score of 99.2%. However, its performance is mediocre across several 

conditions, such as nighttime reflections of headlights, pictures with multiple targets, and nighttime parking.  

2.2. Two-step algorithms 

Two-stage object detection algorithms represent a foundational approach in computer vision, designed to meticulously identify and localize 

objects within images. This method bifurcates the detection process into distinct stages—initial region proposal followed by subsequent 

classification. While potentially more computationally intensive compared to single-stage methods, two-stage algorithms often excel in 

accuracy and precision. The initial stage involves proposing potential regions of interest, and the subsequent stage precisely classifies and 

refines these proposals, offering a robust solution for intricate object recognition tasks. Junxing Zhang et al. [26] presented three deep 

convolutional network models (VLD-C, VLD-B, and VLD-A) for the job of detecting vehicle logos. Additionally, the authors proposed the use 

of a lighter network architecture known as Separable-VLD., which enables real-time car logo identification on embedded devices or CPUs via 

the use of deep separable convolution. The experiment demonstrates that the model can significantly enhance the accuracy of car logo detection 

compared with the other methods[27]. Zhongjie Huang et al. [28] VGG-16 and ResNet-50, two different convolutional neural networks, were 

integrated into the Faster-RCNN model. Following that, a curated dataset including 4000 images of vehicles was assembled, spanning a wide 

range of viewpoints, backgrounds, and resolutions, with a special focus on eight unique automobile emblems. The employment of Faster-RCNN 

methods yields a remarkable mean average precision outcome of 94.33%. The aforementioned results indicate that these techniques show 

potential for accurately identifying vehicle logos on-road surveillance vehicles and demonstrate a noteworthy degree of resilience. 

Wanglong Lu et al. [27] presented a new architecture for deep network learning that ensures category consistency and improves the accuracy 

of VLR. Their suggested model is a convolutional neural network (CNN) that aims to extract characteristics related to car logos. This model 

considers both low-level and high-level components that are present inside an image. Additionally, this research introduces a unique module 

for learning category-consistent masks. This module enhances the framework's ability to prioritize areas that are consistent with the target 

category without the need for license plate identification. Comprehensive empirical assessments and comparisons done on the XMU and HFUT-

VL1 datasets show that the recommended method is both possible and better. Yongtao Yu et al. [29] developed a deep convolutional network 

cascade for recognizing car logos from front and back views of autos. An area suggestion network and a convolutional capsule network make 

up this two-step processing method. By creating a collection of area suggestions, the region suggestion network is in charge of identifying 

suitable vehicle logo areas in the input image. The recommended framework had recognition rates of 99.4%, 98.1%, and 98.7%, respectively, 

for overall performance, detection rates, and overall performance. The suggested framework was practical, efficient, and durable in handling 

various vehicle logo circumstances. It also accurately detected and recognized vehicle logos. 

Ruikang Liu et al. [30] developed a VLR technique using an upgraded matching approach for tiny objects, an SSFPD network, and a limited 

area. The Faster R-CNN algorithm is used to extract an area that is restricted in size and contains the logos of vehicles. This study proposes an 

improved matching technique that utilizes limited area segmentation. The objective is to enhance the contribution of minuscule entities to the 

process of acquiring features when training a network. The objective of using the reduced ResNeXt architecture is to increase the precision of 

recognition by enhancing the classification accuracy of the network. This is done while still keeping more subtle information to facilitate the 

identification of small vehicle logos. The results of comprehensive trials have shown that the approach described in this study outperforms 

previous methods in the identification of tiny vehicle logos. Moreover, it is deemed more suitable for implementation in complicated contexts. 
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This paper conducts a comprehensive exploration of recent advancements in logo detection, with a focus on deep learning-based solutions. 

Table 1 accompanies this discussion, providing an in-depth review of previous studies, analyzing existing deep-learning strategies for logo 

detection, and shedding light on the inherent strengths and weaknesses of each approach. 

Table 1. State of the Art in vehicle logo detection 

Ref/year Approach Metric Dataset Advantages Limitation 

[16]/2020 improved 

YOLOv2 

The model attained a 

recall rate of 99.7%, an 

average accuracy of 99% 

in terms of mean Average 

Precision (mAP)and 

exhibited a test rate of 

around 21.3 frames per 

second. 

PASCA

L VOC. 

The method has the 

capability of autonomous 

learning and feature 

extraction. It is capable of 

concurrently identifying 

and classifying targets, 

exhibiting superior 

accuracy, recall, and real-

time performance. 

The enhanced use of 

image optimization 

techniques has resulted in 

heightened network 

complexity, therefore 

leading to an extended 

duration for training. 

[17]/2020 YOLOv2 

(DarkNet19) and 

Faster-

RCNN(VGG16) 

The Faster-RCNN 

(VGG16) and YOLOv2 

(DarkNet19) models 

exhibit average overlap 

rates of 81% and 76%, 

respectively. 

VLD-30 A recently introduced 

dataset has shown notable 

advancements in the field 

of tiny item recognition. 

Additionally, there is 

promising potential for 

the development of VLD. 

Other unresolved issues 

need attention in the 

future, such as the diverse 

range of contents found in 

vehicle logos. 

[18]/2020 Filter-

DeblurGAN and 

VL-YOLO 

The model that was put 

out attained a mean 

average precision (mAP) 

score of 98.1% when 

evaluated on the LOGO-

17 dataset. 

LOGO-

17 

In the presence of 

motion blur, the 

suggested strategy 

outperforms current ones 

and achieves high 

detection accuracy. 

The suggested 

methodology is deemed 

unsuitable for real-time 

automobile logo detection 

since it exhibits an 

elevated level of 

complexity. 

[19]/2022 improved 

YOLOv4 

The experimental 

findings showed the mean 

accuracy across every 

group in the VLD-45 is 

62.94%, exhibiting a 

notable improvement of 

5.72% compared to the 

initial model. 

VLD-45 A new strategy was 

introduced that utilizes a 

convolutional transformer 

block to mitigate the 

impact of intricate 

backdrops on the 

recognition of car logos. 

The use of a 

deformable convolution 

inside the enhancement 

procedure has led to a 

decrease in the rate of 

detection. 

[20]/2023 YOLO-T The model achieved a 

mean average accuracy 

(mAP) score of 98.5% 

when it was assessed on 

the LOGO-17 dataset. 

LOGO-

17 

The methodology 

demonstrates a notable 

level of precision in 

detecting small-sized car 

logos, effectively 

addressing the issue of 

background interference. 

The YOLO-T network 

employs a hybrid pyramid 

network topology that 

combines both top-down 

and bottom-up 

approaches, resulting in 

heightened complexity 

and increased 

computational 

requirements. 

[21]/2020 FasterR-CNN 

and YOLO 

The F1, precision (P), and 
recall (R) values of our 

technique implemented 

within the YOLO framework 
are 77.65%, 92.95%, and 

66.67%, respectively. 

Whereas the faster R-CNN 
framework has shown 

notable results. Specifically, 

we have attained an F1 score 
of 77.99%, a precision (P) 

value of 93.58%, and a recall 

(R) value of 66.85%. 

BDCI To optimize the speed 

of recognition and 

strengthen the resilience 

of vehicle logo detection 

and identification in 

difficult scenarios. 

The efficacy of Faster 

R-CNN in terms of 

improvement is somewhat 

less pronounced 

compared to YOLO. 

[22]/2021 SSD The VLD-45 dataset 

attained a mean average 

accuracy (mAP) of 

84.81%. Furthermore, the 

speed of detection for the 

processing of an 

individual image is 

documented at 0.32 

seconds. 

VLD-45 This approach has a 

high level of reliability 

and exhibits the ability to 

adapt well to the 

identification of objects in 

complex and demanding 

scenarios. 

The VLD-45 dataset 

comprises logos of reduced 

scale, with a limited size. The 
suggested approach still 

results in false detections. 
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Continue Table 1. State of the Art in vehicle logo detection 

[23]/2023 YOLOV5s In the VLD100K-61, 

the suggested model 

obtained 99.2% of 

mAP0.5. 

VLD100

K-61 

The use of IoU 

Average loss performance 

has many key benefits. 

Firstly, it enhances the 

accuracy of the bounding 

box. Secondly, it enables 

the attainment of greater 

confidence levels. 

Thirdly, it facilitates the 

correction of 

misclassifications. 

Fourthly, it allows for the 

addition of missing 

bounding boxes. Lastly, it 

aids in the removal of 

overlapping bounding 

boxes. 

The model performs 

moderately in a variety of 

scenarios, including the 

reflection of headlights at 

night, multi-target images, 

and parking during the 

night. 

[24]/2019 Modify YOLOv3 The proposed model 

attained a mAP score of 

89.9% on the VLD-30 

dataset. 

VLD-30 The modified YOLOv3 

model proves to be 

successful in achieving 

both speed and accuracy 

in the recognition of 

vehicle logos in 

complicated scenarios. 

Poor detection accuracy 

in complicated vehicle 

logos. 

[25]/2021 Faster R-CNN, 

YOLOV3, SSD, 

RetinaNet, 

YOLOV4 and 

RefineDet 

The Faster R-CNN, 

YOLOV3, SSD, 

RetinaNet, YOLOV4, and 

RefineDet models 

demonstrated mean 

Average Precision (mAP) 

accuracies of 82.8%, 

79.6%, 83.3%, 82.3%, 

84.7%, and 81.2% 

respectively. 

VLD-45 The new dataset has 

substantial research 

potential in the domain of 

tiny object identification. 

The primary objective of 

this research is to 

establish the performance 

of six detectors when 

applied to the given 

dataset. 

The presented dataset 

presents many obstacles, 

including small-sized 

objects, shape distortion, 

poor contrast, and other 

factors. 

[26]/2021 Faster R-CNN 

and YOLO 

The YOLO+VLD-B 

model attained a mAP of 

79.5%, whereas the F-

RCNN+VLD-C model 

obtained a mAP of 87.4%. 

VLD-30 A lightweight model was 
created to minimize the 

number of parameters, 

thereby improving the 
accuracy of detection. The 

implementation of a 

lightweight network can 
effectively address the 

challenge of achieving a 

trade-off between speed and 
accuracy in the detection 

process. 

The accuracy of 

detecting tiny vehicle 

logos is quite low, and 

there are obstacles to 

achieving real-time 

identification of vehicle 

logos on embedded 

devices and central 

processing units (CPUs). 

[27]/2021 CNN The proposed 

methodology yielded a 

classification accuracy of 

99.56% on the HFUT-

VL1 dataset and a perfect 

accuracy of 100.0% on 

the XMU dataset. 

HFUT-

VL1 and 

XMU 

The proposed 

framework has the 

potential to enhance the 

performance of vehicle 

logo recognition in both 

frontal photos of cars and 

vehicle logo images. 

The approach used in 

the tough recognition 

tasks with complex 

imaging settings is not 

tested. 

[28]/2019 Faster-RCNN The Faster R-CNN 

model had a mAP of 

94.33% when evaluated 

on the custom dataset. 

Own 

dataset. 

Showed that approaches 

based on Faster-RCNN have 

strong robustness and may be 
utilized to identify vehicle 

emblems of vehicles 

employed for traffic 
monitoring. 

The dataset used in this 

study was restricted in 

size. 

[29]/2019 Cascaded Deep 

Convolutional 

Network. 

The recognition rate, 

overall performance, and 

detection rate of the 

suggested framework 

were 99.4%, 98.1%, and 

98.7%, respectively. 

Own 

dataset. 

This study introduces a 

cascaded deep 

convolutional network 

that enables the direct 

recognition of car 

emblems, eliminating the 

need for reliance on the 

presence of license plates. 

It is not appropriate for 

real-time car logo 

detection and recognition. 
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Continue Table 1. State of the Art in vehicle logo detection 

[30]/2019 Faster R-CNN 

and SSFPD 

For the Common 

Vehicle Logo Dataset and 

another publicly available 

dataset, the suggested 

technique outperformed 

the current methods, 

achieving accuracy of 

93.79% and 99.52%, 

respectively. 

CVLD This study proposes a 

technique for reliably 

extracting the candidate 

area of a logo by 

segmenting the vehicle 

head and car tail in a 

limited zone. 

The current network 

architecture is not suitable 

for real-time vehicle logo 

detection. 

3. Benchmark Datasets 

This section gives a general overview of the vehicle datasets that are often used for vehicle logo recognition and categorization. Vision-based 

systems have difficulties when creating a huge dataset under a variety of environmental circumstances, such as changing illumination and 

weather. VLD-45 Benchmark Dataset: the VLD-45 dataset [25] dataset specifically designed for vehicle logo identification and recognition. 

This dataset has a total of 45 categories, including 45,000 distinct pictures and a total of 50,359 individual objects. The maximum limit for 

picture dimensions is 7359 pixels in width and 4422 pixels in height, while the lower limit is set at 610 pixels in width and 378 pixels in height. 

The VLD-45 dataset encompasses a diverse range of automobiles, including a majority of the prevalent vehicle manufacturers found in the 

contemporary market. The collection includes several research issues, including but not limited to tiny item detection, poor contrast, backdrop 

interference, form distortion, and other relevant issues. By conducting a thorough analysis of the VLD-45 dataset, it emerged that many images 

included not only annotations of the logo found on the car itself but also annotations of the brand positioning in the backdrop of the automobile. 

The dataset has considerable scientific significance within the domain of small-scale object identification challenges. 

LOGO-17 Benchmark Dataset: the LOGO-17 dataset [18] The dataset LOGO-17 comprises a collection of 18,089 images, each depicting one 

of 17 distinct categories of car logos. The visual representations used in LOGO-17 were derived from a diverse array of circumstances. In 

several approaches, the relative positioning of the licence plate and the automobile brand is often used as a rudimentary means of determining 

the approximate location of the automobile brand. Nevertheless, this approach proves to be laborious and ineffective in instances where the 

licence plate has been detached. In addition to LOGO-17, we also took into account the unique scenario of licence plate shortages or 

eliminations. Hence, the LOGO-17 dataset may be considered a typical dataset. VLD100K-61 Benchmark Dataset: the VLD100K-61 dataset 

[23] comprises a collection of images sourced from the Institute of Static Transportation Research at Xi'an University of Architecture and 

Technology. The size of the dataset is 36.78 gigabytes. The dataset comprises a comprehensive collection of 100,041 RGB images from 61 

distinct manufacturers. The identification of these 61 distinct automobile emblems can accurately classify more than 99 percent of cars within 

the geographical boundaries of China. The dataset exhibits an average image size of 1262 x 725 pixels. 

VL-10 Benchmark Dataset:  the VL-10 dataset [31] focuses on cars and includes instances where brands are either clearly visible or somewhat 

obscured owing to the different angles often seen in surveillance environments. The logos used in this study were obtained through self-

collection from a range of local and online sources. These sources included numerous vehicle sale websites that provide publicly accessible 

photos. The logos are classified into ten distinct vehicle classes, namely Faw, Hino, Nissan, Daihatsu, Mitsubishi, Hyundai, Kia, Honda, Suzuki, 

and Toyota. The training and validation sets were formed by selecting a total of 500 and 50 images per class, respectively. The process of data 

augmentation was thereafter conducted by introducing blur and noise to every individual picture. Consequently, the number of photos per class 

was adjusted to 1500, with 150 allocated for the validation set and 150 for the training set. 

HFUT-VL3 Benchmark Dataset: the HFUT-VL3 dataset [32] comprises a collection of 6,000 images that have been acquired from roadway 

monitoring systems in China. The photographs of the vehicles were taken in many weather circumstances, including instances of snowfall, 

rainfall, and dense fog, as well as under varying lighting levels, encompassing both night-time and daytime settings. Hence, the logos of vehicles 

stored in the database are subject to the effects of factors such as diminished light, blurred imagery, and other forms of noise. In addition, it 

should be noted that the car brands shown in the images constitute a rather minute fraction of the overall visual composition. The aforementioned 

variables together contribute to the challenging nature of the HFUT-VL3 dataset for visual language understanding and description tasks. There 

are a total of 54 distinct kinds of vehicle brands. For training, a training set consisting of 200 images for each brand was used. Similarly, a test 

set including 100 images for each brand was employed. 

CVLD Benchmark Dataset: the CVLD dataset [30] has an overall of 14,950 images, involving several instances of suboptimal outdoor image 

conditions. This dataset contains a categorization of car logos into 13 distinct classifications. The logos in question exhibit a variety of 

resolutions, spanning from 10 × 10 pixels to 150 × 150 pixels. It is worth noting that the bulk of these logos possess resolutions below 50 x 50 

pixels. A total of 13,000 images were used for training, while an additional 1950 images were designated for testing. Each producer in the study 

used a dataset consisting of 1,000 images for training purposes and an additional 150 images for testing purposes. The CVLD_weather test set 

has a total of 920 images depicting adverse weather conditions such as rain, fog, and snow. The CVLD_night test set has a total of 665 nocturnal 

images. The CVLD_tilt test dataset has a total of 750 images, each exhibiting horizontal tilts ranging from 15 to 45 degrees and vertical tilts 

ranging from 15 to 45 degrees. 

Vehicle-logo images Benchmark Dataset: the vehicle-logo images dataset [33] comprises a collection of 4000 automobile images involving 

eight distinct vehicle logos: BMW, Toyota, Audi, Buick, Hyundai, Honda, Volkswagen, and Benz. Partitioning a dataset consisting of 500 

images, each belonging to one of eight distinct kinds, into two separate sets: a set for training and a set for testing. This partitioning is to be 

done by a ratio of 8:2, where the set for training will include 80% of the images and the set for testing will contain the remaining 20%. Fig. 1 

illustrates the total number of images included in each dataset. Table 2 presents an overview of the distinctive attributes about the various data 

sets throughout 2018–2023. Furthermore, it should be noted that all the pictures within the dataset have been normalized to a standardized size 

of 1000 x 600 pixels. 
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Table 2. Characteristics of different data sets from the years 2018–2023 

Ref 

 
Year Dataset 

Total number of 

images (in thousand) 
Image Size 

Number of 

classes 

[33] 2019 Vehicle-logo images 4 1000 × 600 pixels 8 

[18] 2020 LOGO-17 18,089 N/A 17 

[23] 2023 VLD100K-61 100,041 1262 × 725 pixels 61 

[31] 2022 VL-10 16,500 N/A 10 

[30] 2019 CLVD 14,950 From 10 × 10 to 150 ×150 pixels 13 

[32] 2018 HFUT-VL3 6 From 64 × 64 to 64 × 96 pixels 54 

[25] 2021 VLD-45 45 From 610 × 378 to 7359 ×4422 

pixels 

45 

4. Evaluation Metrics 

The evaluation of the object recognition algorithm is conducted using measures known as mean average precision (mAP) and average precision 

(AP). The AP metric is derived by the use of many other measurements, including recall, intersection over union (IoU), precision, false negative, 

true positive, and false positive. These metrics together contribute to the calculation of AP and mAP, as shown in Fig. 1. 

 

Fig. 1. Calculate mean average precision 

4.1. Intersection over union 

The intersection over union criterion is a way of calculating the extent of intersection between a pair of bounding boxes, which are the bounding 

box of the ground truth and the bounding box of the projected. The number in question is bounded inclusively between 0 and 1. If the two 

bounding boxes exhibit total overlap, the prediction is deemed flawless, resulting in an IoU value of 1. Conversely, when the two bounding 

boxes do not intersect, the IoU value is 0. As shown in equation (1), the IoU is measured by dividing the area of two bounding boxes' intersection 

via the region of their union [34, 35]. 

𝐼𝑜𝑈 =
𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥∩𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥

𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥∪𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥
                      (1) 

4.2. True positive and false positive and false negative 

The metrics are calculated by considering the threshold value, IoU, and class labels that are applied to both the predicted and actual bounding 

boxes. The term "true positive" (TP) represents situations when positive samples are correctly identified as car logos. The term "true negative" 

(TN) describes situations when the positive samples, namely car logos, are correctly identified as not being there. A false positive (FP) represents 

situations when samples that do not contain car logos are incorrectly identified as containing vehicle logos. A false negative (FN) refers to 

instances when the positive samples, specifically those depicting vehicle logos, are not correctly identified as such [36]. 

4.3. Precision and recall 

The precision and recall parameters are calculated for each labeled class based on the false negatives, false positives, and true positives [37]. 

The evaluation of the suggested method's performance is conducted using the parameters recall and precision, which are computed according 

to equations (2) and (3). 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                       (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                       (3) 

4.4. Mean average precision and average precision 

The average precision is defined as the integral of the two-dimensional curve formed by precision and recall [38]. The average precision metric 

has a positive correlation with both precision and recall, indicating that high values of accuracy and recall contribute to high average precision, 

whereas low values of either precision or recall result in low average precision. The average precision scale is a numerical continuum that spans 

from 0 to 1. Equation (4) shows the calculation of AP. 

𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0
                       (4) 

The parameter often used to assess the precision of vehicle logo detection algorithms is the mean average precision. The mAP improves the 

precision-recall data [39, 40]. A greater value of the mean average precision value signifies an enhanced degree of accuracy in the prediction, 

as shown by the following equation (5). 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑗

𝑗=1
𝑁                        (5) 

5. Results and Discussion 

There are two distinct categories of object detection: Two-step object detection algorithms, such as Faster R-CNN and its variations, use a two-

step process consisting of proposal generation and subsequent object classification and localization. This approach aims to achieve a trade-off 

between accuracy and computational efficiency. In contrast, one-step algorithms like YOLO and SSD provide direct predictions of object 

properties, enabling real-time inference. However, this approach may come at the expense of reduced accuracy. The accuracy results of the 

one-step algorithms applied to various datasets are shown in Fig. 2. The accuracy results achieved by using the two-step algorithms are shown 

in Fig. 3. The accuracy of the results is greatly influenced by the data set. The amount of precision achieved is directly proportional to the clarity 

of the data set, the intensity of the illumination, and the optimal angle of sight.  

The choice between one-step and two-step algorithms in object detection hinges on the specific demands of the task at hand. One-step 

algorithms, exemplified by YOLO and SSD, excel in real-time applications where rapid processing and inference times are paramount. These 

algorithms, by directly predicting object properties in a single pass, offer a significant advantage in scenarios that require swift responses, such 

as video surveillance, autonomous vehicles, and live-stream analysis. On the other hand, two-step algorithms like Faster R-CNN prioritize 

accuracy and flexibility, making them well-suited for situations where precision and adaptability to diverse datasets are critical. These 

algorithms, by separating the process into region proposal and subsequent classification, often achieve higher accuracy rates but may be 

associated with increased computational demands. Crucially, the decision-making process for selecting the most suitable object identification 

method should involve a thorough evaluation by researchers and practitioners. Understanding the specific needs of the application, considering 

the trade-offs between speed and accuracy, and accounting for the characteristics of the dataset are essential steps in this evaluation. For instance, 

in applications like traffic surveillance or medical imaging, where accuracy is paramount, two-step algorithms may be favoured despite potential 

computational overhead. 

 

Fig. 2. The value of accuracy attained by the use of diverse one-step algorithms on different datasets 
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Fig. 3. The value of accuracy attained by the use of diverse two-step algorithms on different datasets  

Moreover, the dynamic nature of object detection tasks requires a nuanced approach. Hybrid approaches that integrate the strengths of both 

one-step and two-step algorithms are gaining attention. These approaches aim to strike a balance between real-time processing and high 

accuracy, catering to applications that demand both speed and precision. As the field evolves, ongoing research and advancements will likely 

contribute to more sophisticated algorithms that can cater to a broader range of applications and offer versatile solutions for varied requirements. 

In conclusion, careful consideration of algorithmic characteristics and task-specific needs is imperative for selecting the most effective object 

detection approach in diverse and dynamic real-world scenarios. 

Recently, there has been a greater focus on logo identification because of its many applications. However, comprehensive and reliable logo 

identification remains challenging in real-world scenarios and may provide significant obstacles to advancement due to the unique features of 

logo imagery. We try to summarise them as follows: 

▪ Small dimensions: In contrast to generic objects, logos often possess a diminutive size, which might present challenges in differentiating 

them from their surroundings, particularly intricate backgrounds. 

▪ Dynamic Environments and Motion Blur: In real-world scenarios, vehicles are often in motion, leading to dynamic environments and 

potential motion blur in images. Detecting logos under these conditions becomes challenging, as traditional algorithms may struggle to 

accurately identify and localize logos in images affected by motion blur. Developing methods that are resilient to dynamic environments 

is essential for practical applications such as traffic surveillance. 

▪ Diversity in Logo Designs and Styles: Vehicle logos exhibit a wide range of designs, styles, and colour variations across different 

automotive brands. This diversity poses a challenge for detection algorithms, as they need to generalize effectively across varied visual 

characteristics. The need for algorithms to be adaptable to the distinctive features of different logos contributes to the complexity of the 

vehicle logo detection task. 

6. Conclusion 

This paper provides a comprehensive examination of the significant advancements, accomplishments, and limitations related to the use of deep 

learning methods in the recognition and classification of vehicle logos. This study investigates the efficacy of using deep learning methodologies 

in the detection and categorization of vehicle logos. The paper examines benchmark datasets, various assessments of performance indicators, 

and a diverse array of experiments and research undertaken within the domain of vehicle logo identification and classification. The primary 

goal of this study is to thoroughly investigate deep learning techniques and assess their efficacy in the domain of vehicle logo identification and 

classification. The identified challenges, ranging from varied scales and perspectives to real-world disturbances and diversity in logo designs, 

present compelling avenues for future exploration. To address these challenges, forthcoming works could focus on the development of scale-

invariant techniques, algorithms resilient to real-world disturbances, adaptive logo recognition models capable of handling diverse designs, and 

lightweight logo detection solutions for improved computational efficiency. Additionally, proposed solutions involve the exploration of hybrid 

approaches that integrate the strengths of one-step and two-step algorithms, leverage transfer learning for logo recognition, and employ semantic 

segmentation for precise logo localization. These future directions aim to overcome current challenges and contribute to the continual 
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advancement of deep learning methodologies in the domain of vehicle logo identification and classification, providing valuable insights and 

recommendations for researchers and practitioners seeking to enhance the efficacy of logo detection in diverse and dynamic real-world 

scenarios. 
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