Evaluation of Different Stemming Techniques on Arabic Customer Reviews

Hawraa Fadhil Khelil¹, Mohammed Fadhil Ibrahim²*, Hafsa Ataallah Hussein¹, Raed Kamil Naser²

¹Technical College of Management - Baghdad, Middle Technical University, Baghdad, Iraq
²School of Computer Science, Universiti Sains Malaysia (USM), Penang, Malaysia

* Corresponding author E-mail: mohammad63@student.usm.my

Abstract

Customer opinions and reviews play a vital role in marketing expansion. Big companies worldwide assign a lot of their efforts to analyzing customers’ feedback to keep track of their needs. Natural Language Processing (NLP) is widely used to analyze such review texts. Arabic customer analysis and classification also began to gain researchers’ attention due to the wide range of Arabic language speakers. Working with Arabic Language is a very challenging task because of the orthographic nature of Arabic. Also, customers often write their reviews dialectically, diverting from standard Arabic. This study presents a method to classify Arabic customer reviews using four classifiers (K-nearest Neighbor (KNN), Support Vector Machine (SVM), Logistic Regression (LR), and Naïve Bayes (NB)). The classification phase uses three stemming techniques (Snowball, Khoja, and Tashaphyne). The HARD dataset is adopted to perform the experiments. The results stated that the stemming methods could enhance classification performance despite the complexity of Arabic scripts and dialects, where the best accuracy of the results was 91% when using SVM and LR with Snowball Stemmer. This work sheds light on utilizing and investigating more machine learning (ML) techniques and evaluating the results.

1. Introduction

Social media has emerged as a valuable resource for learning about various topics. It is challenging to develop and put into use automated algorithms that can extract knowledge and information from the Arabic language on social media networks. The amount of global digital data produced by global servers surpassed 33 zettabytes in 2018, and 175 zettabytes are predicted to be generated by 2025, according to the International Data Corporation [1]. Globally, there are approximately 4 billion internet users and applications; in the Middle East, the number of users has grown from 147 million to 164 million during the previous few years [2]. With the increasing number of social media users sharing their opinions or leaving reviews or feedback about particular services or products [3], it is no secret to anyone today the role played by reviews, opinions or feedback on various things, whether they are comments on social media or user-written reviews about a particular service or product [4, 5]. Since the Arabic language is an official language in 22 countries around the world [6-8], it is also the 4th most used language on the Internet. For most people, Arabic is considered super complex for several reasons, such as morphology and diacritics[9, 10]. To understand these reviews written in Arabic, we need to process them using NLP techniques, an area of computer science that aims to facilitate communication between machines and humans [11, 12].

Many corporate operations can be made simpler and more automated by utilizing (NLP), particularly those that involve a lot of unstructured text, such as emails, surveys, social media chats, etc. With NLP, businesses may more effectively evaluate their data to support wise decision-making. It is an essential topic in artificial intelligence, and it has brought great convenience to our lives and studies, including popular machine translation, speech recognition, public opinion analysis, text classification, etc. [5]. One essential part of NLP is the classification of texts. With implications for many different fields, the classification problem has been thoroughly studied in data mining, machine learning, and information retrieval. However, this generic approach has yet to be developed in many areas of text classification, especially within Arabic-language texts. Arabic is one of the world’s oldest and most complex languages. Because it is a complete morphological language with numerous dialects, Arabic poses challenges for language identification and NLP. For instance, let’s consider the word (عَقَدَ), if it come individually, then there are different connotations in meaning like (ٌعَقَدَ - عَقَدَة - عَقَدَانَ - عَقَدَة - عَقَدَاتِ - عَقَدَةَ - عَقَدَةٍ - عَقَدَاتِ - عَقَدَةٍ). (Necklace – Decade – Contract – Held – Complicated – Knots). So, if the Arabic word is written out of diacritics, then it will be ambiguous and have several potential meanings, so the context is very important in such cases. Despite the importance of analyzing customer reviews and this process’s role in determining the plans and strategies of commercial organizations, there is a shortage of advanced tools to analyze Arabic reviews compared to English ones [1]. However, Arabic is among the most complex languages. Therefore, it is necessary to utilize more tools and methods to classify reviews in Arabic in order to support the international scientific output [13]. Therefore, providing an excellent way to process Arabic texts and analyze the content of reviews is essential, particularly in light of the expanding usage of social media and web apps. The study’s main objective is to provide a model for classifying reviews of Arabic texts using machine learning techniques and some stemming tools and evaluate the model’s performance.
The structure of this research is organized as follows: Section 2 is dedicated to describing the most related work, followed by the methodology of the study, where a demonstration of the whole process of the word is displayed. Lastly, a number of conclusions and future trends are listed.

2. Related Work

A proposal to classify Arabic tweets using group learning by [14]. Using the Twitter search API, a dataset of 500 tweets was gathered and evenly separated into five groups: public, sports, politics, technology, culture, and sports. The classification was carried out utilizing NB, J48, and Sequential Minimal Optimization (SMO). In [15], three methods have been applied to group learning: stacking each workbook, bagging, and reinforcement. Ten-fold cross-checking revealed that the combined techniques increased each classifier’s accuracy independently. The best accuracy of the packing method was reported by a noticeable percentage of SMOs, who achieved the highest accuracy by the reinforcement and stacking algorithms, respectively.

By examining the categories of the text and categorizing it into the appropriate class (reformist, conservative, or revolutionary) along with the term frequency-inverse document frequency (TF-IDF) for feature extraction (FE), Naive Bayes (NB) classification was presented in [16] to analyze opinions. The results showed that using TF with TF-IDF improved the accuracy to a good ratio. In [17], the researchers conducted artificial neural network-based emotion classification using a dataset of 2,122 sentences from 206 Arabic documents. They also employed this method to categorize people’s opinion posts into three groups: conservative, revolutionary, and reform. The results of comprehensive simulations indicated excellent accuracy in the classification of categories. It has been demonstrated that adding discriminative characteristics to a disclosure form for political orientation articles in Arabic greatly improves the performance of the suggested approach. In [18], three different classifiers were tested: Support Vector Machine (SVM), Gaussian naive Bayes (GNB), and Random Forest (RF). Everyone has adjusted the Super parameters of the workbooks, which comprise a data set of about 35,600 Arabic languages and manually annotated tweets for experiments. In terms of statistics, RF and SVM worked just likewise with TF-IDF and stemming, but the performance was lower with word embedding. In another study presented in [19], where four common algorithms have been investigated to assess the effects of feature selection techniques, Standard Arabic text datasets known as Saudi Press Agency (SPA) were compared to SVM, NB, K-Nearest Neighbors (KNN), and Decision Tree (DT). The results showed that the three feature selection methods often improve classification accuracy by removing irrelevant features.

In [11] and [20], a classification of Arabic theses and dissertation titles was evaluated using standard classifiers. The findings showed that the sensitivity and complexity of the Arabic language make it extremely difficult to classify Arabic short texts. Three techniques were employed to categorize Arabic tweets: CNN, DL, and RNN [21]. The authors used the Twitter API to gather 160,870 Arabic tweets. Eight areas comprise the data set: football, basketball, traffic accidents, crimes, vocalists, beauty and fashion, technology, and the economy. Excluding traffic accidents with 8,600 tweets, the number of tweets for the remaining categories was more balanced and ranged from 20 thousand to 24 thousand. The performance of the DL models was very close. From all of the above, we can come to some conclusions that affect the classification results, whether it is normal learning or deep learning, that the processing of texts, whether long or short, is one of the important processes to get the best text that emotion analysis techniques can understand, analyze and classify, where the more the processing process is developed and based on the use of more methods in terms of data cleaning or feature extraction, the higher the extracted accuracy, the texts written in the colloquial dialect require the use of text processing techniques more than those written in formal Arabic, where the more colloquial dialect, the lower the accuracy. This study presents another experiment using different methods to process texts written in Arabic but also in the context of dialect. Also, we measure the performance by analyzing the role of different stemming methods and evaluating the results.

3. Methodology

In general, most studies dealing with NLP have common steps depicting the whole research process. Fig. 1 describes our methodology.
3.1. Data collection

The dataset of this study is known as the Hotel Arabic Reviews Dataset (HARD), which has Arabic-language hotel reviews [22]. The HARD dataset has been utilized in many studies and research involved with NLP and Arabic language such as (22–27). This dataset was collected from the Booking.com site during the period (June-July 2016). The initial balanced HARD dataset has 93,700 reviews of positive and negative classes. The Arabic language used in customer reviews in the dataset was a combination of Modern Standard Arabic (MSA), which is the formal form of the language, and Dialectal Arabic (DA), which is colloquial Arabic. Every region of the Arabic countries has a distinct form for a given word in official Arabic, which varies depending on the country [28].

By representing the dataset, it was shown that the length of the review written by the customer has a high level of variation regarding the text length. So that some users register long comments while others report a few words. NLP, in general, has shortcomings when the text is short; less text means less information. Therefore, an early step was performed on the data set: removing the concise comments (less than 100 characters) and the very long text (more than 800 characters). After completing this step, the dataset becomes of size (36098) reviews divided into two categories: Negative (18992) and Positive (17106), as described in Figs. 2 and 3.

![Fig. 2. Dataset Description](image2)

![Fig. 3. Customer Reviews Distribution Based on Text Length](image3)

3.2. Data pre-processing

One of the main processes of any NLP-related task is preparing the data for a machine learning task. This process involves some procedures that aim to initiate the date for further analysis. For any text, there are some limitations to performing such functions because the performance quality mainly relies on the quality of processed data. So, the pre-processing steps are very critical. As mentioned before, Arabic is considered one of the most complex scripts and has a high sensitivity against cleaning and encoding tasks [30]. This complexity is also increased when dealing with the variety of dialects, their highly derivative nature, and the ambiguity caused by diacritics. For enterprise applications, nearly all forms of data analysis, data science, and artificial intelligence development need data pre-processing to produce robust, accurate, and dependable findings. Real-world data is chaotic and is produced, handled, and retained by a variety of people, organizations, and software programs.

Consequently, the dataset can have different names for the same entity, contain human entry errors, duplicate data, or be missing entire fields. In many cases, humans can recognize and fix these issues in the data they utilize for their work. Nevertheless, automatic data pre-processing is required for deep learning algorithms or machine learning training [31]. Restructuring raw data into a model appropriate for specific algorithms is made possible by feature engineering techniques that include feature processing, transformation, reduction, selection, and scaling [32]. This can drastically cut down on the amount of processing power and time needed to train and evaluate a new AI or machine learning system. In this research, the pre-processing methods for Arabic texts such as the following:

3.2.1. Tokenization

Coding is one of the first steps in any NLP processing path [33]. It divides raw text into tiny fragments of words or sentences called tokens. In general, the “space” is used to carry out word encoding, and characters such as “dots, exclamation mark and newline character are used to encode the sentence”. The choice of the correct coding method depends on the specific neuro-linguistic programming (NLP) task at hand [31]. This approach dissects textual content into its basic units, namely, words.
3.2.2. Removing Stop Words

Words classified as stop words are not semantically significantly related to the context in which they are used, such as (prepositions, sign names, hyphenated nouns, and interrogative tools) [34]. Terms that appear frequently in most documents within a given group are known as stopwords. These frequent terms may not seem significant in determining which posts fit the user’s requirements. In other words, these words cannot contribute to differentiation between the positive and negative reviews since they exist in both [35]. Therefore, eliminating these phrases won’t have an impact on the classifier’s performance because they have no impact on the classification task, in addition to dimensionality reduction, which is important in most ML tasks Table 1.

<table>
<thead>
<tr>
<th>English Meaning</th>
<th>Arabic Word</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td>Fey</td>
<td>Prepositions</td>
</tr>
<tr>
<td>on</td>
<td>Alaa</td>
<td>Pronouns</td>
</tr>
<tr>
<td>to</td>
<td>Ela</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Ana</td>
<td></td>
</tr>
<tr>
<td>we</td>
<td>Nahno</td>
<td></td>
</tr>
<tr>
<td>Below</td>
<td>Tahit</td>
<td></td>
</tr>
<tr>
<td>Above</td>
<td>Fawk</td>
<td></td>
</tr>
<tr>
<td>Now</td>
<td>Alaaan</td>
<td></td>
</tr>
<tr>
<td>Since</td>
<td>Monzo</td>
<td></td>
</tr>
<tr>
<td>What</td>
<td>Lemaza</td>
<td>Question</td>
</tr>
<tr>
<td>When</td>
<td>Mata</td>
<td></td>
</tr>
<tr>
<td>If</td>
<td>Eza</td>
<td>Conjunctions</td>
</tr>
<tr>
<td>Then</td>
<td>Soma</td>
<td></td>
</tr>
<tr>
<td>except</td>
<td>Adaa</td>
<td></td>
</tr>
</tbody>
</table>

3.2.3. Stemming

The stem word is a crucial component that modern indexing and search engines support [36]. Information retrieval systems, NLP systems, and text extraction applications include indexing and searching. The main idea of stemming is to unite similar words and replace them with a single one. For example, both words (Historical, History) would be replaced by the word (Histori). The critical point is that the possibility of giving a similar meaning appears whenever a form of the word appears. Even though the word in the past example (Histori) is meaningless in the English Language, it can still be used to put a particular text in its desired category, hence with classification problems, stemming can do a good job, but for other NLP applications, it may be not giving the desired results. In Arabic, the stemming process returns similar words to a single root, which is an effective technique when dealing with such complex scripts [37]. The main goal of the root-based root is to extract the primary form of any given word by performing a morphological analysis of the word. An example of the “بّلع” which means (Play) in English, can have multiple forms like "بّلع" → "Game", "بّلع" → "Stadium", "بّلع" → "Player", "بّلع" → "Players (Females)", "بّلع" → "Players (Males)", "بّلع" → "Two Players (Males)"), and so on. This example shows the diversity and complexity of Arabic scripts. Encoding and analyzing such words can be hectic, and companies with a high error rate since Arabic does not follow a fixed letter-based orthographic style. Instead, a related meaning word can noticeably differ from the original one [38, 39]. Therefore, by using stemming, the past example “بّلع” and all its similar words can be returned to a united root such as (“لع”), which means (“play”). This study involves using two different stemmers and evaluating their performance accordingly. Khoja Stemmer: One of the most used morphological derivation algorithms is Khoja’s algorithm [30, 34]. The Khoja Stemmer eliminates the longest suffix and longest prefix of a word. To find the word’s root, it then compares the remaining words to nouns (nouns) and linguistic patterns. After eliminating the biggest prefix and suffix from the word, the algorithm compares the remaining portion of the word with its verbal and nominal patterns to determine the root [40-42]. Snowball Stemmer: This derivation algorithm, sometimes referred to as the porter2 derivation algorithm, is an improvement on the Porter Stemmer algorithm because several of its flaws have been Tashaphyne Stemmer: It is a light Arabic derivative and syllable [43]. It primarily encourages light derivation, eliminating suffixes and prefixes and providing all conceivable divisions. It creates all partitions by utilizing a modified finite state automaton because it offers both extraction and root extraction simultaneously. In contrast to Khoja, ESRI, Asim, and Frasa stemmers. In addition to having prefixes and suffixes by default, Tashaphyne also supports using a list of custom prefixes and suffixes, enabling it to handle additional features and generate custom derivatives without requiring code modifications [44-46].

3.3. Classification of texts

One of the essential uses of NLP is text classification [47]. It is well recognized that defining the ideal text classifier is impossible to attain since the process of classification depends on different criteria, like the type of texts and the purpose of classification. There is widespread consensus on a standard approach for creating models, neural networks, and other accepted techniques in fields like computer vision [48]. Otherwise, text classification still lacks this general method in many areas. The classification of Arabic texts is one of the important topics in large-scale Arabic text mining due to the steady increase in the growth of Arabic content on the Internet. It is one of the research topics of great importance, where high-quality information is extracted from the texts and the topics to which those texts belong to be classified, especially when these texts are large and cannot be classified manually [49]. The current research problems are related to the huge number of Arabic texts found on the Internet, which is constantly increasing, and researchers are working to solve and benefit from this data by applying some data mining techniques to classify them. This research aimed to utilize the benefits of algorithms proven in other areas of the Arabic language [50]. Some of the algorithms we will present in this research are SVM, NB, LR, and KNN.

3.3.1. Support Vector Machine (SVM)

In order to create the best model possible for additional data, supervised learning models called SVM classifiers search for the optimum hyperplane to split two different data classes -in our instance, reviews. Vapnik produced the SVM approach [51], which has shown very high
accuracy in text categorization and pattern recognition [52, 53]. Better performance with fewer samples and faster speed are its two key advantages. Because of this, the approach is practical for classifying text issues.

3.3.2. Naive Bayes (NB)

It is a simple algorithm that sorts the text based on the probability of occurrence of events [49]. This algorithm is based on Bayes Theorem, which helps to find the conditional probabilities of the events that have occurred based on the probabilities of each event occurring separately. To further understand how to use them in the text classification, we assume that the task is to determine whether the given sentence is a negative or positive statement [54]. Just like all machine learning models, the NB model also requires a training dataset containing a set of sorted sentences with their categories. Using a Bayesian equation (1, 2), the probability for each category is calculated with its sentences. The algorithm decides whether the sentence belongs to the positive or negative category based on the probability value.

\[
P(c|x) = \frac{p(x|c)p(c)}{p(x)}
\]

(1)

\[
P(c|x) = P(x_1|c) \times P(x_2|c) \times \ldots \times P(x_n|c) \times P(c)
\]

(2)

Where:

P(C|X) is the probability of C given that X is True.
P(X) and P(C) are the independent probabilities of X and C.

3.3.3. Logistic regression (LR)

Since this technique also predicts the likelihood that Y is connected to the input variable X, it similarly works as an NB classifier [47]. Formula (1) is a statistical model for binary logistic regression with a single predictor. P is the probability that the dependent variable ‘X’ will take the value 1, given the value of ‘x’, while X is the independent variable.

\[
P(X) = e^{(\beta_0 + \beta_1 x_2 + \ldots + \beta_k x_k)}
\]

(3)

Where:

P: Probability that X =1 given x, X: dependent variable, Xn, Xi: independent variables, β: Model parameters.

It is appropriate for the parameter. Using the maximum probability technique, “β0” and “βi”. The probability function is maximized in this method. The logistic function can be used to forecast the probability of the target variable p(Xi) for a given input (Xi) with ease once the two parameters have been evaluated. LR is a simple model, so training takes a short time. It can cope with a considerable number of features. Although it has the word regression in its name, we can only use it for classification problems due to its range, which is always between 0 and 1 [55]. It can only be used for binary classification issues and responds poorly to multi-category ones.

3.3.4. K-Nearest Neighbor (KNN)

According to the KNN method, the sample and most of the k nearest neighbours in a feature space fall into the same category. The algorithm uses several primary components, including k-value selection distance measurement. First, a K value selection experiment is conducted, and a straightforward cross-validation method is used to determine the ideal K value from the text datasets. By interfering with the training sets’ and test sets’ sample selection. Second, the distance between neighbours in space is measured using distance measures. Euclidean distance is the most popular distance metric for determining the exact separation between two points in a multidimensional space. Euclidean distance is computed using the KNN algorithm to determine the distance of the data point based on formula (4) [56-58].

\[
d(p, q) = \sqrt{\sum_{i=1}^{n}(q_i - p_i)^2}
\]

(4)

4. Experiments and Results Discussion

As mentioned, four classifiers were used to evaluate the model performance (SVM, KNN, NB, and LR). The classification performance has been evaluated according to the outcomes of applying the classifiers on three different stemming techniques (Khoja, Snowball, and Tashaphyne). Since each stemming method has its procedures for stemming Arabic words, there will be a difference between stemmers in terms of rooting each word. Based on that, there should be a variety in the outcomes among the classifiers. Accuracy is adopted to evaluate the proposed model.

In general, accuracy relies on the confusion matrix, which compares the properly and erroneously categorized values to the actual results in the test data and is a widely used visual aid for illustrating how well classification algorithms perform. There are four variables included in the accuracy measurement as the following formula:

\[
\text{Accuracy} = \frac{(TP + TN)}{(TP + TN + FP + FN)}
\]

(5)

Where:

TP: are the cases that were correctly predicted by the model.
TN are the cases that were expected to be incorrect by the model.
FP are the cases predicted by the model but are incorrect.
FN: These cases were predicted to be incorrect by the model but are true.
All the study tools and procedures were implemented using Python programming tools. The dataset was divided into two sets: a training set, which formed (80%) of the whole cleaned dataset, and the rest assigned to the testing phase. All the classification and stemming tools and methods have the same settings.

As stated in Table 2, four different classifiers were used in addition to three different classifiers. The procedure started by encoding the reviews involved in the dataset and performing the main text cleaning and encoding tools.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>No Stemming</th>
<th>Khoja</th>
<th>Snowball</th>
<th>Tashaphyne</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>0.88</td>
<td>0.90</td>
<td>0.91</td>
<td>0.90</td>
</tr>
<tr>
<td>NB</td>
<td>0.82</td>
<td>0.88</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>LR</td>
<td>0.89</td>
<td>0.89</td>
<td>0.91</td>
<td>0.90</td>
</tr>
<tr>
<td>KNN</td>
<td>0.78</td>
<td>0.85</td>
<td>0.85</td>
<td>0.81</td>
</tr>
</tbody>
</table>

From the results illustrated in Table 2, it is seen that SVM classifiers have outranged other classifiers with (88%) without stemming, and the best performance came when applying Snowball stemming with a performance of (91%) accuracy. Also, it presented a steady performance even when applying different stemming, so the other stemming tools slightly differ from the best one. The lowest performance goes to the KNN classifier, which started from the performance of (78%). It also presented a fluctuating performance along with the stemming methods, with Snowball and Khoja at about (85%) and going down with Tashaphyne stemmer at only (81%). According to the NB classifier, the performance started with a low rate at (82%) but rose noticeably to reach (89%) with Tashaphyne and Snowball stemmers. The performance LR seems to be close to the SVM with stability in terms of stemming tools. In addition, LR continued giving a similar performance rate even when applying stemming tools (Fig. 4).

![Classification Performance along with different stemming tools](image)

From the results gained, and for most of the classifiers, we can see that stemming methods enhance the results based on our model except for the KNN classifier, which seems not to be affected by stemming tools. Since the idea of stemming relies on the attempt to reduce the number of similar words into one root word, this helped enhance the performance. Snowball presented the best stemmer among all three stemmers, which is depicted by the performance rate, which increased with most classifiers. Despite the positive effect of the stemming tools, however, the enhancement rate is still not convenient, and this is due to some factors. Firstly, the complexity of the Arabic language in terms of structure, since it mainly relies on its orthographic nature, makes it super sensitive to processing tools so that the processing may give different terms with different meanings. Secondly, the processed dataset is a customer review with a free writing style with no rules and restrictions. This makes the reviews unpredictable, and sometimes, people express their opinions using symbols or emojis, which are ambiguous to the machine when they are processed. Lastly, the dataset is full of dialect terms, and for Arab countries, each country has its own dialect (even many dialects in the same region). The dialectal terms affect the results significantly because some terms mean different things if used under the context of dialect.

5. Conclusion

From the gained results of the presented model, it can be said that, in general, the stemming tools contribute positively to enhancing the performance rate for text classification. SVM and Snowball presented the best method according to our model since they presented the highest performance rate compared to other methods. However, the positive role is still below the level of ambition since such an effect is not that convenient. From the procedure of the study and the nature of the dataset, companies have some limitations and difficulties with classifying Arabic texts, especially when dealing with Arabic dialects where the meaning of a word might be interpreted differently from the exact meaning. The proposed method presented a good attempt at classifying Arabic reviews by comparing different tools and methods. This study opens the way toward adopting more advanced methods to deal with Arabic texts effectively and try some tools and methods to overcome dialect limitations, such as WordNet and Word Embedding.
Acknowledgment

The authors would like to acknowledge the cooperation and assistance they received from the Technical College of Management - Baghdad, Middle Technical University, Baghdad, Iraq to complete this research.

References

null