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Article Info. Abstract

Presented in this paper is a direct model predictive control (MPC) for directly controlling the rotor speed and flux of an
inverter-fed induction motor, which is also applicable to induction generators. A discrete dynamic model of the induction
machine is applied in a stationary reference frame with pre-set present and past reference values of the speed and rotor
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across the machine’s stator terminals. As a precursor for obtaining an optimal rotor flux command in the MPC for every
torque output, another unique efficiency improvement scheme is developed, which uniquely determines the stator angular
velocity and the rotor flux that minimize the core and copper losses while maintaining a constant slip operation. Therefore,
the efficacy of the proposed direct model predictive control scheme is verified by comparing its results to those obtained
from equivalent vector control on an equivalent machine. Results presented show lower loss regime with MPC on optimal
stator angular velocity and rotor flux than vector control.
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1. Introduction

In the control of induction motors (IM), model-based predictive schemes have in recent times become an attractive and effective alternative to
the conventional vector control and direct scalar control methods [1]. It has also been applied to the control of grid-connected power converters
and has been shown to offer good results and performance [2]. In all of these, the future state of the system to be controlled is predicted in a
defined horizon. A finite control set of voltage vectors is then used to minimize a cost function which reduces the difference between set
references and the predicted values. In [3], model predictive flux control of IM drives was investigated. A proportional plus integral (P1) control
cascade structure with switching instant optimization was used to reduce the torque ripple and current harmonics. Different methods in [4] and
[5] have also been studied for the predictive speed control of IMs. These methods also have outer speed regulator; which is used for generating
the reference torque or current required by the IM. In [6], a direct model predictive control (MPC) scheme was proposed whereby the need for
a PI control cascade was eliminated. Therefore, the MPC was cascade-free, and all the state variables were used to formulate the cost function.
However, the cascade-free MPC was utilized only for control of inverter based solar photovoltaic power evacuation into grid.

MPC schemes have also been applied to control other electric machines; for instance, in [7-12], different variants of MPC schemes were
proposed for permanent magnet synchronous motors. In [8], a non-cascaded model-free predictive control was presented for control of surface
magnet permanent magnet synchronous machine. In this case direct control of rotor speed was achieved by a cost function; which was
formulated using the error between the reference rotor speed and actual rotor speed only. Errors in the quadrature and direct stator currents with
their respective references were not used in the cost function formulation. However, constraints were placed on the quadrature and direct stator
currents not to exceed their limits. In [9], the non-cascaded MPC in [8] was extended whereby the cost functions were formed using the
summation of weighted square of errors in the rotor speed, the quadrature and direct stator currents and their respective references. Maximum
torque per ampere was achieved via the MPC. However, neither the rotor flux nor the stator flux was regulated.
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Nomenclature & Symbols

g-d Quadrature-Direct Vgs, Vds, Vg (0, d, and Complex qd Stator Voltages

igs, Ids, Iges @, d, and Complex qd Stator Currents Jgs, Ads, Aq @, d, and Complex qd Stator Flux Linkages
igsiigsiigas O, d, and Complex qd Stator Currents Ass Square of Magnitude of Stator Flux Linkage
Var, Vdr, Vgar ~ , d, and Complex qd Stator Referred Rotor Voltages L, Lr Stator and Stator Referred Rotor Self-Inductances
Arr Square of Magnitude of Rotor Flux Linkage Lm Inductance (3/2 in value)

rs, I'r Stator and Stator Referred Rotor Resistance rs, I'r Stator and stator Referred Rotor Resistance
@, We Angular velocity in Arbitrary, and Synchronous Frames or, Ws Rotor Speed, Stator Angular Velocity

Agr, Adr, Aqar ¢, d, and Complex qd Stator Referred Rotor Flux Linkages MPC Model Predictive Control

icq, icd, iecqd @, d, and Complex gd Core Loss Currents Pl Proportional Plus Integral

igr, idr, iqdr g, d, and Complex qd Stator Referred Rotor Currents IM Induction Machine

In this paper, therefore, a direct MPC for the control of speed and rotor flux of the IM that is cascade-free is presented. The cost in the proposed
MPC for IM encapsulates the summation of weighted rotor speed error, weighted rotor flux error, and unweighted quadrature and direct stator
current errors. It also develops an optimization algorithm that is used for efficiency optimization by minimizing the core and copper losses in
the IM.

2. Methodology
2.1. Dynamic IM model

An equivalent circuit of the IM is shown in Fig. 1, and it would be used for the analysis of the machine.

Fig. 1. g-d equivalent circuit model of induction machine including core—loss resistance

A state-space model of squirrel-cage IM developed from the conventional q-d reference vector variable model [13] is given in Egs. (1-5).

di, . L, L,
L d: =vqs—r|qs+rr/1qu—wr/1drT @
dim : Lm Lm 2
L it =V — Mg + 1A, L2 + @ Ay L—r (2
dA, r rL, .
d's :—L—'/lqr + M+ @, Ay @)
dA r rL .
dsr :_Lir/ldr +ﬂlds _wr/lqr (4)
dwr :E(Te _Tm) (5)
a  J

The electromagnetic torque T is given in Eq. (6).

T, =(3PL,, /2L, N Auries — Aqrics ) (6)

dr'gs qr'ds
The model is in the stationary reference frame when w = 0 and is used for developing a direct MPC scheme.
2.2. Steady-state IM model

The core loss in the machine is accounted for by resistance rc. Therefore, the steady state stator and rotor voltage equations of IM in the arbitrary
reference frame are given in Eq. (7) and Eq. (8) with all the differential terms set to zero.

Vaas = Tslgas — jwetdags (N
Vaar = trlqar — j(@e — wy)dagr @)
Where Ag45 = Lslgas + Linlgar 9)
Agar = Lrlgar + Lmlgas (10)
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Iqas = Iqac + Igqs (11)
u=1+r/r 12)
In Eq. (11), I'’ss is the electromagnetic torque-producing stator current component.

2.3. Inverter model

The inverter-fed IM drive is illustrated in Fig. 2.
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Fig. 2. An inverter-fed induction motor drive system
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The stator terminals of the IM are fed from a 2-level three-phase voltage source inverter; whose output voltage quantities in stationary g-d
reference frame are given in Eq. (13),

M,
[qu] _ Ve 1 —-1/2 -1/2 M:p 13
vasl ~ 3 Mo v3/2 —v3/2l|,,”
cp

where each of M, M, and M, represents the modulation index for each of the phases. M, My, and M, are related to Sg;,, Sy, and Sg,,
respectively by S;;, = 0.5(1+ Mip) i=a, b, ¢, which are the three-phase switching functions of the inverter’s top leg (positive switching) power
semiconductors. Each switching function taking a logic ‘1’ or logic ‘0’ state at every switching instance. The S,y,, Spp, and S, are related to
bottom-leg (negative) switching functions Sg,,, Sy, and S, by Sy, + Si, = 1 where i=a, b, ¢, to guarantee that Kirchhoff’s voltage law (KVL)
is not violated by shorting the input DC voltage source.

2.4. Loss minimization

Eqg. (14) gives the combined electrical losses of the core (iron) and copper losses (P;) of the IM.
P, =2 (%7 + L + 17r,) (14)

In Eq. (14), the first two terms are the stator and rotor copper losses, while the last term yields the core loss. Fig. 3 (a) was obtained by keeping
the rotor speed constant at 200 rad/s with a load torque of 3.8 Nm, and varying the stator angular velocity from 210 rad/s to 280 rad/s. In a
variable frequency drive, under constant speed operation when the stator angular velocity increases with increase in rotor current, without
saturation, the copper and core losses run contrarily as shown in Fig. 3(a), i.e. the copper loss increases while the core loss decreases. Therefore,
the point of intersection of the core and copper losses create a compromise between the two losses which establishes a point of optimal operating
regime. Therefore, the stator angular velocity and the rotor current at this point of intersection correspond to optimal values. The point of
intersection will be determined subsequently.

In obtaining Fig. 3(b), the rotor speed was kept constant at 200 rad/s while the stator angular velocity was varied for each of the mechanical
(load) torque values shown. Similar observation is noticed for other rotor speed values. It is easily seen in the figure that the minimal loss
regimes for the three load torque values occur at the same stator angular velocity. In Fig. 3(c), there is a rotor flux linkage that corresponds with
the minimal electrical losses. So, the question is: “Can the stator angular velocity and the rotor flux linkage that correspond to the minimal loss
regime be uniquely determined?” Answer to this question will be given in the optimization procedure that will be given subsequently.
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Fig. 3. () Copper and core losses versus rotor current; (b) Copper and core losses versus stator angular velocity; (c) Copper and core losses
versus rotor flux linkage

The steady-state model given in sub-section 2.2 is used for loss minimization with an objective (cost) function of minimizing the stator copper,
rotor copper, and core losses. Therefore, the real power loss equation in Eq. (14) and the electromagnetic torque in Eq. (6) are subjected to the
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classical Jacobi optimization procedure with respect to the stator angular velocity and magnitude of the rotor current. In Eq. (5), at steady-state
the electromagnetic torque Te equals the mechanical torque Tm. Consequently, with further substitution and simplification of Eq. (6), Eq. (15)
is obtained for Te, from which Eq. (16) is derived that is substituted in Eq. (14) to yield Eq. (17).

_ 3P rlIf
Te =Tm ((a) wr)) (15)
4’( — r) 4( — r)
I? = C.:P‘rl: Te = C’:Prl:) Tm (16)
LW 2
PL—(apL+(w m)‘i'(m w)z)l (17)

where, ap; = —[ (L2 — 1) — 1) = 2LsL (1 + 1) + 1 + 15l + L%nrc] and bp, = % Cpr = 2; [rr2(1 + L2) + 7,L%]

Therefore, Eq. (18) is obtained as the Jacobi required for the loss minimization, which is subject to the constraints in Eq. (19). Consequently,
an optimal stator angular velocity is obtained in Eq. (20).

ar, ar,
al, dw| _

ap, ar| = 0 (18)
dl, dw

Vs = ,thq + des < Vs rated and Iy = ’Igs + 155 < I rated (19)
a)opt =, * B_ (20)

Cc
where, A, = 1.1;2(1 + L2) + r2r?L2, and B, = r.rs(1 + L2 L2 — 27orgLgL, L2, + 27gn L2, + 11 L2, + 121212 — 2r2LgL, 1%, + r2LY,
An insight into Eq. (20) reveals that with the optimization procedure, the slip of the induction machine will always be kept constant at all rotor
speeds to guarantee the minimization of electrical losses. Aligning the rotor flux such that Aqr=0 and Aar= Ar, where A%, + A2, = 22, then from

the d-axis component of Eq. (8) lsr =0 , which implies that lqr = Ir at steady-state where /2. + 12, = IZ. Consequently, the optimal rotor flux
linkage is given in Eq. (21).

— _ Trlgr
Aar = pry— (21)
AT (Wopt—wr
tyr = [ @)

Eq. (22) is derived from Eqg. (15) to further evaluate Eq. (21) as Eq. (23), which gives a reference command rotor flux linkage for the model
predictive control scheme.

4T 1y
Adropt = fm (23)

The Tm can always be determined by developing a mechanical torque observer. An example of such an observer was given in [14]. Therefore,
unique equations for the optimal stator angular velocity in Fig. 2 (b) and the rotor flux linkage in Fig. 2 (c) have been obtained in Eg. (20) and
Eq. (23), respectively.

2.5. Direct MPC scheme
2.5.1. Discrete model of IM

In general, model predictive control schemes entail using discrete models of dynamic systems for predicting the control inputs that give the
least predefined cost function or multi-objective functions. The state variable model given in Eqgs. (1-4) is considered for discretization.
However, Eq. (3) and Eq. (4) are used to obtain Eq. (24) for further simplification in the control scheme.

Ay, ¥ L
df;: = 2(_Ezrr + q'Lf T + Ad'[f Ly idsj (24)
INEq. (24), A, = A," + Ay (25)

Hence, using Euler’s forward approximation formula, the discrete model of the IM currents, rotor flux magnitude, and rotor speed is obtained
in Eqgs. (26-29) respectively.

L

o r r

qs(k+1)=iqs(k)+-[s(Vqs(k) qs(k) I m qr(k) ), (k)L ﬂdr(k)J (26)

K)L A (k
ids(k+1>=ids(k)+TS{vds(k)—rids<k>+“L“if(k)f”() ofal )] @
L, L, L,
K)r. L, i (k i
A (k+D)= 2, (k)+2TS(—[—'ﬂrr (k) + 2 - o () ’Id'(k)rlf_Lm'ds(k)) 28)
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0,(k+1) = 0,00+ 25 (K (4 (0 (K) = 2y (i () ~T, () (29

In Egs. (26-29), (k) and (k+1) are used to denote the present and immediate future values of the variables at each step-size While'l'S is the
sampling time.
2.4.2. Predictive Model

In this subsection, the predicted future state variable of the IM is obtained from Eqgs. (26-29). The predicted g-d state variables of the stator
currents in Eq. (26) and Eq. (27) are compacted in complex form of Eq. (30).

T m)L r . Wr m}L T
TrLlmAqar(k) —j @y (k) LmAqq (k)) (30)

, . Ty .
fqas” Uk + 1) = iqas () + 7= (Vaas (K) = Tigas () + 2% o

In the conventional vector control schemes, the current loops serve as the inner loop control, while the speed and flux loops usually serve as
the outer control loops with a view to obtaining cascaded control structure. In this MPC scheme, however, the term ‘direct MPC' is used because
no outer cascade Pl controller is required as described in [4, 5]. Rather than the cascaded control structure with PI, the g-d components of Eq.
(30) are used in Eq. (28) and Eq. (29) to obtain Eq. (31) and Eq. (32).

;P . P

APk + 1) = A () + 2T, (— I Ay () + 2 mtas CHD) ) dar(Orvlmbas ("“)) 31)
T,P (3P , .

o (k + 1) = 0r(0) + 2 (5 (2ar (0 g (k + 1) = Agr (O a5 (k + 1)) = T (k) ) (32)

2.6. Cost function minimization

The four-term cost function for the direct MPC is given in Eqg. (33). The four terms are the magnitude of the speed error; magnitude of the
square of the rotor flux linkage; magnitude of both g-d components of the stator current. The minimization of the cost function entails
determining the finite switching state that corresponds to the least cost function at every immediate future iteration. Consequently, the switching
state that corresponds to the least cost function is selected for switching the inverter at every immediate step size.

) (33)

gz(A
[0

InEq. (33) A, , A,,and A, represent the weight factors, which are selected to aid the convergence of the iterative process. However, the
weight factors of the speed and rotor flux are selected to be of different values from each other and different from that of the stator current
because they all experience different dynamic states. In this case, speed and rotor flux regulation is the primary objective, hence A ,, A ; are

*

o (k +1) - o (k +1)

*

P
A (k+1) -4  (k+1)
rr rr

*

i (k+)-iP(k+1)
as as

*

: P
i (kD) =il (k)

+A + A, +A
A i i

chosen to be greater than A; =1. Furthermore, consideration is also given to compensate for the slow speed dynamics by specifically changing

the iteration step of the speed in Eq. (33) to about k+5 as given in Eq. (34). The variables with asterisks ‘*’in Eq. (33) and consequently Eq.
(34) are the reference commands of the state variables.
) (34)

¢ = (/\
(2]

2.7. Reference command variables

Unlike conventional vector control techniques that achieve decoupled control of the speed and rotor flux of an IM using a cascaded PI control
structure or predictive speed control methods that have an outer PI controller for speed regulation, the method proposed in this paper achieves
the same control objectives without the use of linear speed regulators or a cascade PI structure. It uses the discrete dynamic model of the
machine in Eq. (31) and Eq. (32) with the input reference values of speed and rotor flux in the previous and present sampling instant to obtain
the reference q and d-axis currents of the machine. The future reference values of the stator currents, iqs*(k +1) and ids*(k +1) given in Eq.

(35) are thus obtained.

mldr KLm qr ](w (k) " (k_l)
[iqs*(k+ 1 ] [ )+ Thn

ids*(k + 1)] Ter qr rerldr A" (K)— Arr (k- 1)) rrL/lrr

*

P
A (k+D) -4  (k+1)
r r

o (k+5)—aF (k+5)+A FAL kD) -iP kDAl (k+D)-iP (k+1)
r A i|gs gs i|ds ds

(35)

The reference command of the speed of the IM, for example, when connected to a wind turbine to operate as a generator is set by appropriate
maximum power point tracking algorithm, and when operated as a motor the reference command is set by the operator. The rotor reference flux
can be obtained from the optimization procedure of Section 2.3. Using Lagrange’s extrapolation formula, the future reference value of the rotor
speed and rotor flux can be obtained from Eq. (36) and Eq. (37), respectively. The overall direct MPC scheme is illustrated in Fig. 4.

wr(k+1) = 20" (k) — 0 (k- 1) (36)
Xk +1) = 22 (k) = 2 (ke = 1) @7)
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Fig. 4. Block diagram of the MPC scheme
3. Results and Discussion

Simulation of the proposed drive system was done in MATLAB/SIMULINK environment. The sampling time Ts for the MPC was selected as
105 s. The parameters of a 230-V line-line (rms), 60Hz, 4-pole squirrel-cage induction machine used in the simulation are given in Table 1.

Table 1. Machine Parameters

Parameter Value
Stator resistance (rs) 0.435Q
Rotor referred resistance (rr) 0.816 Q
Stator leakage inductance (LIs) 0.002 H
Rotor referred leakage inductance (LIr) 0.002 H
Magnetizing Inductance (Lm) 0.0693 H
Core loss resistance (rc) 850 Q
Inertia (J) 0.089 kg.m?

The simulation was done in two sets. In the first set, the load (mechanical) torque was set to 1 N.m and stepped to 0.5 N.m at 4 s, while the
reference speed of the machine was set to ramp from zero at t=0 to 300 rad/s at t = 1 sec. Att =2 s, a step change in speed from 300 rad/s to
250rad/s was set. Investigations on speed reversal operation of the IM was also set between t =4 and t =5 s. A step change in load disturbance
was introduced to the system at t = 4 s. The reference of the square of the magnitude of the optimal rotor flux was computed from Eq. (23).
Results obtained from the simulation are presented in Figs. 5 to 10.

In Fig. 5, shows the optimal stator angular velocity obtained from Eqg. (20). The asymmetry in the pulse width of the switching functions in Fig.
6 implies the selection of the switching state that ensures that Eq. (34) is minimized at every instance of sampling. The waveform in Fig. 7
shows the actual IM rotor speed tracking the described set references. The difference between Figs. 5 & 7 maintains a constant slip. Fig. 8
shows the rotor flux magnitude tracking the optimal rotor flux reference set by the loss minimization scheme developed and follows the
trajectory of the load torque. The rotor flux linkage follows the load torque profile of the induction motor, as can be seen in Fig. 8 that at 4 s
when the load torque was stepped from 1 N.m to 0.5 N.m. the square of the magnitude of the rotor flux was also stepped down accordingly
based on Eq. (4). Figs. 9 & 10 are the stationary q and d-axis stator currents of the IM respectively. In Figs. 9 & 10 both g and d stator currents

reduced when the load torque was stepped from 1 N.m to 0.5 N.m. at 4 s.

1999 19992 19994 19996  1.9998

(rad/s)

apt

Tideq 200 20004 20006 Zoos 2001
Fig. 5. Optimal stator angular velocity Fig. 6. Switching functions: Sap. Sbp, and Scp
0.15| T T T T
ol |
3 0.05 ]
"
Time (seconds) ! l ’ Ti‘mc [s«-ru:ds] ) ’ ’
Fig. 7. Reference and actual rotor speed Fig. 8. Reference and actual square of magnitude of rotor flux linkage
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lds (A)

0 1 2

Tifm' (secu:ds}
Fig. 9. Stator stationary g-axis current

Time (seconds)

Fig. 10. Stator stationary d-axis current

In the second set of simulations, the load (mechanical) torque was set to 5 N.m while the rotor speed was fixed at 200 rad/s, and the stator
angular velocity was initially set at an optimal value of 224 rad/s. The reason for these settings was to compare the stator and rotor currents
with those obtained by setting the stator angular velocity at 210 rad/s, which is below the optimal value, while the rotor speed was kept at 200
rad/s. Another reason was to compare the stator and rotor currents from the optimal setting with those obtained from an induction machine on
a vector (rotor field orientation) control scheme with the same machine parameters, load torque, rotor speed reference, and optimal stator angular
velocity. The values of the stator and rotor currents provide insight into the loss regime of the machine.

Therefore, Figs. 11 to 16 are results obtained from the MPC at the optimal settings. Figs. 11 and 12 show the rotor speed tracking the reference
of 200 rad/s and the optimal rotor flux linkage was computed from Eq. (23), which gives the reference for the square of magnitude of rotor flux
linkage (1*,) as 0.238 Wh?. The stationary q and d-axis stator currents are seen in Figs. 13 and 14, while the stationary rotor currents are seen
in Figs. 15 and 16. Figs. 17 to 20 present the stationary ¢ and d stator and rotor currents when the stator angular velocity was changed to 210
rad/s while keeping the rotor speed at 200 rad/s. When compared to Figs. 13 to 16, Figs. 17 to 20 have larger magnitudes, with evidently more
harmonics. As such, the loss regime from the operations at a stator angular velocity changed to 210 rad/s remains higher than when at the
optimal value of 224 rad/s. Figs. 21 to 24 are the stationary g and d stator and rotor currents from equivalent vector control scheme on induction
motor with stator angular velocity set at optimal 224 rad/s and optimal 1%, obtained as 0.238 Wb2. In a comparative analysis, the stator and
rotor currents from the MPC were lower in magnitude than those obtained from the equivalent vector control scheme. Therefore, the loss regime
of the vector control will be greater than that of the MPC. The reason for such can be attributed to the minimization in MPC that selects
switching functions set that correspond to minimal of Eq. (34). However, the switching of vector control is symmetrical, while the switching
of MPC is asymmetrical, which may yield slightly more ripples in the machine’s electromagnetic torque from the MPC.
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Fig. 18. Stator stationary d-axis current at wg = 210 rad/s
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Fig. 24. Rotor stationary d-axis current at optimal w,; =
224 rad/s

5. Conclusion

A PI controller-free model-based predictive speed control scheme was developed for a squirrel cage IM in a stationary reference frame. A four-
term cost objective function consisting of different weight factors was used in selecting the switching states with the least errors. The efficiency
improvement scheme developed uniquely computes the stator angular velocity and rotor flux linkage reference that minimize the core and
copper losses while maintaining a constant slip operation. The results presented show effective performance of the proposed direct MPC scheme
when step and ramp changes were introduced to the rotor speed and when step change was introduced to the load torque. Comparing the results
obtained from MPC at optimal stator angular velocity and optimal rotor flux linkage to results from vector control yielded a lower loss regime
with the MPC. Therefore, the results presented show effective performance of the proposed direct MPC scheme.
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