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Presented in this paper is a direct model predictive control (MPC) for directly controlling the rotor speed and flux of an 
inverter-fed induction motor, which is also applicable to induction generators. A discrete dynamic model of the induction 

machine is applied in a stationary reference frame with pre-set present and past reference values of the speed and rotor 
flux for generating the stator current references. The uniqueness of the MPC proposed herein is that it does not require 

outer cascade proportional plus integral (PI) controllers used for regulating rotor speed and flux. The elimination of the 

outer loop cascade is made possible in this article by the introduction of a unique four-term cost function comprising 
weighted magnitudes of the errors between four measured state variables and their reference commands.  The four state 

variables in the unique cost function are the rotor speed, the rotor flux linkage, quadrature axis and direct axis stator 

currents. The MPC minimizes the cost function at every switching instance by selecting the switching states that give the 
least cost function. Consequently, the selected optimal switching states are used to switch optimal inverter output voltages 

across the machine’s stator terminals.  As a precursor for obtaining an optimal rotor flux command in the MPC for every 

torque output, another unique efficiency improvement scheme is developed, which uniquely determines the stator angular 
velocity and the rotor flux that minimize the core and copper losses while maintaining a constant slip operation. Therefore, 

the efficacy of the proposed direct model predictive control scheme is verified by comparing its results to those obtained 

from equivalent vector control on an equivalent machine. Results presented show lower loss regime with MPC on optimal 
stator angular velocity and rotor flux than vector control. 
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1. Introduction 

In the control of induction motors (IM), model-based predictive schemes have in recent times become an attractive and effective alternative to 

the conventional vector control and direct scalar control methods [1]. It has also been applied to the control of grid-connected power converters 

and has been shown to offer good results and performance [2].  In all of these, the future state of the system to be controlled is predicted in a 

defined horizon. A finite control set of voltage vectors is then used to minimize a cost function which reduces the difference between set 

references and the predicted values. In [3], model predictive flux control of IM drives was investigated. A proportional plus integral (PI) control 

cascade structure with switching instant optimization was used to reduce the torque ripple and current harmonics. Different methods in [4] and 

[5] have also been studied for the predictive speed control of IMs. These methods also have outer speed regulator; which is used for generating 

the reference torque or current required by the IM. In [6], a direct model predictive control (MPC) scheme was proposed whereby the need for 

a PI control cascade was eliminated. Therefore, the MPC was cascade-free, and all the state variables were used to formulate the cost function. 

However, the cascade-free MPC was utilized only for control of inverter based solar photovoltaic power evacuation into grid.  

MPC schemes have also been applied to control other electric machines; for instance, in [7-12], different variants of MPC schemes were 

proposed for permanent magnet synchronous motors. In [8], a non-cascaded model-free predictive control was presented for control of surface 

magnet permanent magnet synchronous machine. In this case direct control of rotor speed was achieved by a cost function; which was 

formulated using the error between the reference rotor speed and actual rotor speed only. Errors in the quadrature and direct stator currents with 

their respective references were not used in the cost function formulation. However, constraints were placed on the quadrature and direct stator 

currents not to exceed their limits. In [9], the non-cascaded MPC in [8] was extended whereby the cost functions were formed using the 

summation of weighted square of errors in the rotor speed, the quadrature and direct stator currents and their respective references. Maximum 

torque per ampere was achieved via the MPC. However, neither the rotor flux nor the stator flux was regulated. 
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Nomenclature & Symbols   

q- d Quadrature-Direct vqs, vds, vq  q, d, and Complex qd Stator Voltages 

iqs, ids, iqds   q, d, and Complex qd Stator Currents                                        λqs, λds, λq  q, d, and Complex qd Stator Flux Linkages 

𝑖𝑞𝑠
′ ,𝑖𝑑𝑠

′ ,𝑖𝑞𝑑𝑠
′  q, d, and Complex qd Stator Currents λss  Square of Magnitude of Stator Flux Linkage 

vqr, vdr, vqdr q, d, and Complex qd Stator Referred Rotor Voltages L, Lr               Stator and Stator Referred Rotor Self-Inductances 

λrr  Square of Magnitude of Rotor Flux Linkage Lm  Inductance (3/2 in value) 

rs, rr   Stator and Stator Referred Rotor Resistance rs, rr   Stator and stator Referred Rotor Resistance 

ω, ωe    Angular velocity in Arbitrary, and Synchronous Frames ωr , ωs  Rotor Speed, Stator Angular Velocity 

λqr, λdr, λqdr     q, d, and Complex qd Stator Referred Rotor Flux Linkages MPC  Model Predictive Control 

icq, icd, icqd q, d, and Complex qd Core Loss Currents PI  Proportional Plus Integral 

iqr, idr, iqdr    q, d, and Complex qd Stator Referred Rotor Currents IM   Induction Machine 

 

In this paper, therefore, a direct MPC for the control of speed and rotor flux of the IM that is cascade-free is presented. The cost in the proposed 

MPC for IM encapsulates the summation of weighted rotor speed error, weighted rotor flux error, and unweighted quadrature and direct stator 

current errors. It also develops an optimization algorithm that is used for efficiency optimization by minimizing the core and copper losses in 

the IM. 

2. Methodology 

2.1. Dynamic IM model  

An equivalent circuit of the IM is shown in Fig. 1, and it would be used for the analysis of the machine.  
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Fig. 1.  q–d equivalent circuit model of induction machine including core–loss resistance 

 

A state-space model of squirrel-cage IM developed from the conventional q-d reference vector variable model [13] is given in Eqs. (1-5). 
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The electromagnetic torque Te is given in Eq. (6). 

( )( )dsqrqsdrrme iiLPLT  −= 23                                                                            (6) 

The model is in the stationary reference frame when ω = 0 and is used for developing a direct MPC scheme. 

2.2. Steady-state IM model 

The core loss in the machine is accounted for by resistance rc. Therefore, the steady state stator and rotor voltage equations of IM in the arbitrary 

reference frame are given in Eq. (7) and Eq. (8) with all the differential terms set to zero.  

𝑉𝑞𝑑𝑠 = 𝑟𝑠𝐼𝑞𝑑𝑠
′ − 𝑗𝜔𝑒𝜇𝜆𝑑𝑞𝑠                          (7) 

𝑉𝑞𝑑𝑟 = 𝑟𝑟𝐼𝑞𝑑𝑟 − 𝑗(𝜔𝑒 − 𝜔𝑟)𝜆𝑑𝑞𝑟                         (8) 

Where 𝜆𝑞𝑑𝑠 = 𝐿𝑠𝐼𝑞𝑑𝑠
′ + 𝐿𝑚𝐼𝑞𝑑𝑟                         (9) 

𝜆𝑞𝑑𝑟 = 𝐿𝑟𝐼𝑞𝑑𝑟 + 𝐿𝑚𝐼𝑞𝑑𝑠
′                         (10) 
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𝐼𝑞𝑑𝑠 = 𝐼𝑞𝑑𝑐 + 𝐼𝑞𝑑𝑠
′                           (11) 

𝜇 = 1 + 𝑟𝑠/𝑟𝑐                         (12) 

In Eq. (11), I’qs is the electromagnetic torque-producing stator current component. 

2.3. Inverter model 

The inverter-fed IM drive is illustrated in Fig. 2.  
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Fig. 2. An inverter-fed induction motor drive system 

The stator terminals of the IM are fed from a 2-level three-phase voltage source inverter; whose output voltage quantities in stationary q-d 

reference frame are given in Eq. (13),  

[
𝑣𝑞𝑠

𝑣𝑑𝑠
] =

𝑣𝑑𝑐

3
[
1 − 1 2⁄ − 1 2⁄

0 √3 2⁄ −√3 2⁄
] [

𝑀𝑎𝑝

𝑀𝑏𝑝

𝑀𝑐𝑝

]                                                                                                     (13) 

where each of 𝑀𝑎𝑝, 𝑀𝑏𝑝, and 𝑀𝑐𝑝 represents the modulation index for each of the phases.  𝑀𝑎𝑝, 𝑀𝑏𝑝, and 𝑀𝑐𝑝 are related to 𝑆𝑎𝑝, 𝑆𝑏𝑝, and 𝑆𝑐𝑝 

respectively by 𝑆𝑖𝑝 = 0.5(1 + 𝑀𝑖𝑝) i=a, b, c, which are the three-phase switching functions of the inverter’s top leg (positive switching) power 

semiconductors. Each switching function taking a logic ‘1’ or logic ‘0’ state at every switching instance. The 𝑆𝑎𝑝, 𝑆𝑏𝑝, and 𝑆𝑐𝑝 are related to 

bottom-leg (negative) switching functions 𝑆𝑎𝑛, 𝑆𝑏𝑛, and 𝑆𝑐𝑛 by 𝑆𝑖𝑝 + 𝑆𝑖𝑛 = 1 where i=a, b, c, to guarantee that Kirchhoff’s voltage law (KVL) 

is not violated by shorting the input DC voltage source.  

2.4. Loss minimization  

Eq. (14) gives the combined electrical losses of the core (iron) and copper losses (PL) of the IM. 

 𝑃𝐿 =
3

2
(𝐼𝑠

2𝑟𝑠 + 𝐼𝑟
2𝑟𝑟 + 𝐼𝑐

2𝑟𝑐)                                (14) 

In Eq. (14), the first two terms are the stator and rotor copper losses, while the last term yields the core loss. Fig. 3 (a) was obtained by keeping 

the rotor speed constant at 200 rad/s with a load torque of 3.8 Nm, and varying the stator angular velocity from 210 rad/s to 280 rad/s. In a 

variable frequency drive, under constant speed operation when the stator angular velocity increases with increase in rotor current, without 

saturation, the copper and core losses run contrarily as shown in Fig. 3(a), i.e. the copper loss increases while the core loss decreases. Therefore, 

the point of intersection of the core and copper losses create a compromise between the two losses which establishes a point of optimal operating 

regime. Therefore, the stator angular velocity and the rotor current at this point of intersection correspond to optimal values. The point of 

intersection will be determined subsequently. 

In obtaining Fig. 3(b), the rotor speed was kept constant at 200 rad/s while the stator angular velocity was varied for each of the mechanical 

(load) torque values shown. Similar observation is noticed for other rotor speed values. It is easily seen in the figure that the minimal loss 

regimes for the three load torque values occur at the same stator angular velocity. In Fig. 3(c), there is a rotor flux linkage that corresponds with 

the minimal electrical losses. So, the question is: “Can the stator angular velocity and the rotor flux linkage that correspond to the minimal loss 

regime be uniquely determined?” Answer to this question will be given in the optimization procedure that will be given subsequently.  

 
(a)                                                    (b)                (c) 

Fig. 3. (a) Copper and core losses versus rotor current; (b) Copper and core losses versus stator angular velocity; (c) Copper and core losses 

versus rotor flux linkage 

The steady-state model given in sub-section 2.2 is used for loss minimization with an objective (cost) function of minimizing the stator copper, 

rotor copper, and core losses. Therefore, the real power loss equation in Eq. (14) and the electromagnetic torque in Eq. (6) are subjected to the 
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classical Jacobi optimization procedure with respect to the stator angular velocity and magnitude of the rotor current.  In Eq. (5), at steady-state 

the electromagnetic torque Te equals the mechanical torque Tm.  Consequently, with further substitution and simplification of Eq. (6), Eq. (15) 

is obtained for Te, from which Eq. (16) is derived that is substituted in Eq. (14) to yield Eq. (17). 

𝑇𝑒 = 𝑇𝑚 =
3𝑃

4
(

𝑟𝑟𝐼𝑟
2

(𝜔−𝜔𝑟)
)                                 (15) 

𝐼𝑟
2 =

4(𝜔−𝜔𝑟)

3𝑃𝑟𝑟
𝑇𝑒 =

4(𝜔−𝜔𝑟)

3𝑃𝑟𝑟
𝑇𝑚

                       

(16)

  𝑃𝐿 = (𝑎𝑃𝐿 +
𝑏𝑃𝐿𝜔

(𝜔−𝜔𝑟)
+

𝑐𝑃𝐿

(𝜔−𝜔𝑟)2
) 𝐼𝑟

2

                        

(17) 

where, 𝑎𝑃𝐿 =
3

2
[

𝐿𝑠

𝐿𝑚
2 (𝐿𝑠

2(𝑟𝑟 − 𝑟𝑐) − 𝑟𝑟) − 2𝐿𝑠𝐿𝑟(𝑟𝑟 + 𝑟𝑐) + 𝑟𝑟 + 𝑟𝑠𝐿𝑚 + 𝐿𝑚
2 𝑟𝑐], and  𝑏𝑃𝐿 =

3𝑟𝑟𝑟𝑠

2𝑟𝑐
,

  

𝑐𝑃𝐿 =
3

2𝐿𝑚
2 [𝑟𝑠𝑟𝑟

2(1 + 𝐿𝑠
2) + 𝑟𝑐𝐿𝑠

2] 

Therefore, Eq. (18) is obtained as the Jacobi required for the loss minimization, which is subject to the constraints in Eq. (19). Consequently, 

an optimal stator angular velocity is obtained in Eq. (20).  

|
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| = 0                                      (18) 
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2 + 𝑉𝑑𝑠

2 ≤ 𝑉𝑠_𝑟𝑎𝑡𝑒𝑑 𝑎𝑛𝑑 𝐼𝑠 = √𝐼𝑞𝑠
2 + 𝐼𝑑𝑠

2 ≤ 𝐼𝑠_𝑟𝑎𝑡𝑒𝑑                          (19) 

c

c
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B

A
=

                         

(20)  

where, 𝐴𝑐 = 𝑟𝑐𝑟𝑟
2(1 + 𝐿𝑠

2) + 𝑟𝑐
2𝑟𝑟

2𝐿𝑠
2, and 𝐵𝑐 = 𝑟𝑐𝑟𝑠(1 + 𝐿𝑠

2)𝐿𝑟
2 − 2𝑟𝑐𝑟𝑠𝐿𝑠𝐿𝑟𝐿𝑚

2 + 2𝑟𝑠𝑟𝑟𝐿𝑚
2 + 𝑟𝑐𝑟𝑟𝐿𝑚

2 + 𝑟𝑐
2𝐿𝑠

2𝐿𝑟
2 − 2𝑟𝑐

2𝐿𝑠𝐿𝑟𝐿𝑚
2 + 𝑟𝑐

2𝐿𝑚
4  

 An insight into Eq. (20) reveals that with the optimization procedure, the slip of the induction machine will always be kept constant at all rotor 

speeds to guarantee the minimization of electrical losses. Aligning the rotor flux such that λqr=0 and λdr= λr, where 𝜆𝑞𝑟
2 + 𝜆𝑑𝑟

2 = 𝜆𝑟
2, then from 

the d-axis component of Eq. (8) Idr =0 , which implies that Iqr = Ir  at steady-state where 𝐼𝑞𝑟
2 + 𝐼𝑑𝑟

2 = 𝐼𝑟
2. Consequently, the optimal rotor flux 

linkage is given in Eq. (21). 

 𝜆𝑑𝑟 = −
𝑟𝑟𝐼𝑞𝑟

𝜔𝑜𝑝𝑡−𝜔𝑟

                         

(21)

  

𝐼𝑞𝑟 = √
4𝑇𝑚(𝜔𝑜𝑝𝑡−𝜔𝑟)

3𝑃𝑟𝑟

                        

(22)

  
Eq. (22) is derived from Eq. (15) to further evaluate Eq. (21) as Eq. (23), which gives a reference command rotor flux linkage for the model 

predictive control scheme.  

𝝀𝒅𝒓_𝒐𝒑𝒕 = ±√
𝟒𝑻𝒎𝒓𝒓

𝟑𝑷(𝝎𝒐𝒑𝒕−𝝎𝒓)

                        

(23)

  
The Tm can always be determined by developing a mechanical torque observer. An example of such an observer was given in [14]. Therefore, 

unique equations for the optimal stator angular velocity in Fig. 2 (b) and the rotor flux linkage in Fig. 2 (c) have been obtained in Eq. (20) and 

Eq. (23), respectively. 

2.5. Direct MPC scheme 

2.5.1. Discrete model of IM 

In general, model predictive control schemes entail using discrete models of dynamic systems for predicting the control inputs that give the 

least predefined cost function or multi-objective functions. The state variable model given in Eqs. (1-4) is considered for discretization. 

However, Eq. (3) and Eq. (4) are used to obtain Eq. (24) for further simplification in the control scheme.    
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 In Eq. (24), 
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drqrrr  +=                         (25) 

Hence, using Euler’s forward approximation formula, the discrete model of the IM currents, rotor flux magnitude, and rotor speed is obtained 

in Eqs. (26-29) respectively.  
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In Eqs. (26-29), (k) and (k+1) are used to denote the present and immediate future values of the variables at each step-size while sT  is the 

sampling time. 

2.4.2. Predictive Model   

In this subsection, the predicted future state variable of the IM is obtained from Eqs. (26-29). The predicted q-d state variables of the stator 

currents in Eq. (26) and Eq. (27) are compacted in complex form of Eq. (30).  

𝑖𝑞𝑑𝑠
𝑃(𝑘 + 1) = 𝑖𝑞𝑑𝑠(𝑘) +

𝑇𝑠

𝐿𝑜
(𝑣𝑞𝑑𝑠(𝑘) − 𝑟𝑖𝑞𝑑𝑠(𝑘) +

𝑟𝑟𝐿𝑚𝜆𝑞𝑑𝑟(𝑘)

𝐿𝑟
2 − 𝑗

𝜔𝑟(𝑘)𝐿𝑚𝜆𝑑𝑞𝑟(𝑘)

𝐿𝑟

)                                                                    (30) 

In the conventional vector control schemes, the current loops serve as the inner loop control, while the speed and flux loops usually serve as 

the outer control loops with a view to obtaining cascaded control structure. In this MPC scheme, however, the term ‘direct MPC’ is used because 

no outer cascade PI controller is required as described in [4, 5]. Rather than the cascaded control structure with PI, the q-d components of Eq. 

(30) are used in Eq. (28) and Eq. (29) to obtain Eq. (31) and Eq. (32). 

 𝜆𝑟𝑟
𝑃(𝑘 + 1) = 𝜆𝑟𝑟(𝑘) + 2𝑇𝑠 (−

𝑟𝑟

𝐿𝑟
𝜆𝑟𝑟(𝑘) +

𝜆𝑞𝑟(𝑘)𝑟𝑟𝐿𝑚𝑖𝑞𝑠
𝑃(𝑘+1)

𝐿𝑟
+

𝜆𝑑𝑟(𝑘)𝑟𝑟𝐿𝑚𝑖𝑑𝑠
𝑃(𝑘+1)

𝐿𝑟
)                   (31) 

𝜔𝑟
𝑃(𝑘 + 1) = 𝜔𝑟(𝑘) +

𝑇𝑠𝑃

𝐽
(

3𝑃

2
(𝜆𝑑𝑟(𝑘)𝑖𝑃

𝑞𝑠
(𝑘 + 1) − 𝜆𝑞𝑟(𝑘)𝑖𝑃

𝑑𝑠(𝑘 + 1)) − 𝑇𝑚(𝑘))                                                               (32) 

2.6. Cost function minimization 

The four-term cost function for the direct MPC is given in Eq. (33). The four terms are the magnitude of the speed error; magnitude of the 

square of the rotor flux linkage; magnitude of both q-d components of the stator current. The minimization of the cost function entails 

determining the finite switching state that corresponds to the least cost function at every immediate future iteration. Consequently, the switching 

state that corresponds to the least cost function is selected for switching the inverter at every immediate step size. 
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                       (33) 

In Eq. (33)  ,  , and i represent the weight factors, which are selected to aid the convergence of the iterative process. However, the 

weight factors of the speed and rotor flux are selected to be of different values from each other and different from that of the stator current 

because they all experience different dynamic states. In this case, speed and rotor flux regulation is the primary objective, hence  ,   are 

chosen to be greater than i =1. Furthermore, consideration is also given to compensate for the slow speed dynamics by specifically changing 

the iteration step of the speed in Eq. (33) to about k+5 as given in Eq. (34). The variables with asterisks ‘*’in Eq. (33) and consequently Eq. 

(34) are the reference commands of the state variables. 
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2.7. Reference command variables   

Unlike conventional vector control techniques that achieve decoupled control of the speed and rotor flux of an IM using a cascaded PI control 

structure or predictive speed control methods that have an outer PI controller for speed regulation, the method proposed in this paper achieves 

the same control objectives without the use of linear speed regulators or a cascade PI structure. It uses the discrete dynamic model of the 

machine in Eq. (31) and Eq. (32) with the input reference values of speed and rotor flux in the previous and present sampling instant to obtain 

the reference q and d-axis currents of the machine. The future reference values of the stator currents, )1(
*

+kiqs
 and )1(

*
+kids

 given in Eq. 

(35) are thus obtained. 

[
𝑖𝑞𝑠

∗(𝑘 + 1)

𝑖𝑑𝑠
∗(𝑘 + 1)

] = [

𝐾𝐿𝑚𝜆𝑑𝑟

𝐿𝑟

−𝐾𝐿𝑚𝜆𝑞𝑟

𝐿𝑟

𝑟𝑟𝐿𝑚𝜆𝑞𝑟

𝐿𝑟

𝑟𝑟𝐿𝑚𝜆𝑑𝑟

𝐿𝑟

]

−1

[
(

𝐽(𝜔∗
𝑟(𝑘)−𝜔∗

𝑟(𝑘−1)

𝑃𝑇𝑠
) + 𝑇𝑚

(
𝜆𝑟𝑟

∗(𝑘)−𝜆𝑟𝑟
∗(𝑘−1)

2𝑇𝑠
) −

𝑟𝑟𝜆𝑟𝑟

𝐿𝑟

]                    (35)  

The reference command of the speed of the IM, for example, when connected to a wind turbine to operate as a generator is set by appropriate 

maximum power point tracking algorithm, and when operated as a motor the reference command is set by the operator. The rotor reference flux 

can be obtained from the optimization procedure of Section 2.3. Using Lagrange’s extrapolation formula, the future reference value of the rotor 

speed and rotor flux can be obtained from Eq. (36) and Eq. (37), respectively. The overall direct MPC scheme is illustrated in Fig. 4.  

𝜔∗
𝑟(𝑘 + 1) = 2𝜔∗

𝑟(𝑘) − 𝜔∗
𝑟(𝑘 − 1)                       (36) 

𝜆∗
𝑟𝑟(𝑘 + 1) = 2𝜆∗

𝑟𝑟(𝑘) − 𝜆∗
𝑟𝑟(𝑘 − 1)                       (37)  
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Fig. 4. Block diagram of the MPC scheme 

3. Results and Discussion 

Simulation of the proposed drive system was done in MATLAB/SIMULINK environment. The sampling time Ts for the MPC was selected as 

10-5 s. The parameters of a 230–V line-line (rms), 60Hz, 4-pole squirrel–cage induction machine used in the simulation are given in Table 1.  

Table 1. Machine Parameters  

Parameter Value 

Stator resistance (rs) 

Rotor referred resistance (rr) 

Stator leakage inductance (Lls) 

0.435 Ω 

0.816 Ω 

0.002 H 

Rotor referred leakage inductance (Llr) 0.002 H 

Magnetizing Inductance (Lm) 

Core loss resistance (rc) 

Inertia (J) 

0.0693 H 

850 Ω 

0.089 kg.m2 

 

The simulation was done in two sets. In the first set, the load (mechanical) torque was set to 1 N.m and stepped to 0.5 N.m at 4 s, while the 

reference speed of the machine was set to ramp from zero at t=0 to 300 rad/s at t = 1 sec. At t = 2 s, a step change in speed from 300 rad/s to 

250rad/s was set. Investigations on speed reversal operation of the IM was also set between t = 4 and t = 5 s. A step change in load disturbance 

was introduced to the system at t = 4 s. The reference of the square of the magnitude of the optimal rotor flux was computed from Eq. (23). 

Results obtained from the simulation are presented in Figs. 5 to 10.  

In Fig. 5, shows the optimal stator angular velocity obtained from Eq. (20). The asymmetry in the pulse width of the switching functions in Fig. 

6 implies the selection of the switching state that ensures that Eq. (34) is minimized at every instance of sampling. The waveform in Fig. 7 

shows the actual IM rotor speed tracking the described set references. The difference between Figs. 5 & 7 maintains a constant slip. Fig. 8 

shows the rotor flux magnitude tracking the optimal rotor flux reference set by the loss minimization scheme developed and follows the 

trajectory of the load torque. The rotor flux linkage follows the load torque profile of the induction motor, as can be seen in Fig. 8 that at 4 s 

when the load torque was stepped from 1 N.m to 0.5 N.m. the square of the magnitude of the rotor flux was also stepped down accordingly 

based on Eq. (4). Figs. 9 & 10 are the stationary q and d-axis stator currents of the IM respectively. In Figs. 9 & 10 both q and d stator currents 

reduced when the load torque was stepped from 1 N.m to 0.5 N.m. at 4 s. 

                                              

                 Fig. 5. Optimal stator angular velocity                                               Fig. 6. Switching functions: Sap. Sbp, and Scp 

                                                 

                 Fig. 7. Reference and actual rotor speed                                   Fig. 8. Reference and actual square of magnitude of rotor flux linkage 
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Fig. 9. Stator stationary q-axis current                                                                       Fig. 10. Stator stationary d-axis current 

In the second set of simulations, the load (mechanical) torque was set to 5 N.m while the rotor speed was fixed at 200 rad/s, and the stator 

angular velocity was initially set at an optimal value of 224 rad/s. The reason for these settings was to compare the stator and rotor currents 

with those obtained by setting the stator angular velocity at 210 rad/s, which is below the optimal value, while the rotor speed was kept at 200 

rad/s. Another reason was to compare the stator and rotor currents from the optimal setting with those obtained from an induction machine on 

a vector (rotor field orientation) control scheme with the same machine parameters, load torque, rotor speed reference, and optimal stator angular 

velocity. The values of the stator and rotor currents provide insight into the loss regime of the machine. 

Therefore, Figs. 11 to 16 are results obtained from the MPC at the optimal settings. Figs. 11 and 12 show the rotor speed tracking the reference 

of 200 rad/s and the optimal rotor flux linkage was computed from Eq. (23), which gives the reference for the square of magnitude of rotor flux 

linkage (𝜆∗
𝑟𝑟) as 0.238 Wb2.  The stationary q and d-axis stator currents are seen in Figs. 13 and 14, while the stationary rotor currents are seen 

in Figs. 15 and 16. Figs. 17 to 20 present the stationary q and d stator and rotor currents when the stator angular velocity was changed to 210 

rad/s while keeping the rotor speed at 200 rad/s. When compared to Figs. 13 to 16, Figs. 17 to 20 have larger magnitudes, with evidently more 

harmonics. As such, the loss regime from the operations at a stator angular velocity changed to 210 rad/s remains higher than when at the 

optimal value of 224 rad/s.  Figs. 21 to 24 are the stationary q and d stator and rotor currents from equivalent vector control scheme on induction 

motor with stator angular velocity set at optimal 224 rad/s and optimal 𝜆∗
𝑟𝑟 obtained as 0.238 Wb2. In a comparative analysis, the stator and 

rotor currents from the MPC were lower in magnitude than those obtained from the equivalent vector control scheme. Therefore, the loss regime 

of the vector control will be greater than that of the MPC. The reason for such can be attributed to the minimization in MPC that selects 

switching functions set that correspond to minimal of Eq. (34). However, the switching of vector control is symmetrical, while the switching 

of MPC is asymmetrical, which may yield slightly more ripples in the machine’s electromagnetic torque from the MPC. 

  

Fig.11. Reference and actual rotor speed Fig. 12. Reference and actual square of magnitude of rotor flux 

linkage 

  

Fig. 13. Stator stationary q-axis current at optimal 𝝎𝒐𝒑𝒕 =

𝟐𝟐𝟒 𝒓𝒂𝒅/𝒔 

Fig. 14. Stator stationary d-axis current at optimal 𝝎𝒐𝒑𝒕 =

𝟐𝟐𝟒 𝒓𝒂𝒅/𝒔 

  

Fig. 15. Rotor stationary q-axis current at optimal 𝝎𝒐𝒑𝒕 =

𝟐𝟐𝟒
𝒓𝒂𝒅

𝒔
 

Fig. 16. Rotor stationary d-axis current at optimal 𝝎𝒐𝒑𝒕 =

𝟐𝟐𝟒 𝒓𝒂𝒅/𝒔 
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Fig. 17. Stator stationary q-axis current at 𝝎𝒔 = 𝟐𝟏𝟎 𝒓𝒂𝒅/𝒔 Fig. 18. Stator stationary d-axis current at 𝝎𝒔 = 𝟐𝟏𝟎 𝒓𝒂𝒅/𝒔 

  

Fig. 19. Rotor stationary q-axis current at 𝝎𝒔 = 𝟐𝟏𝟎 𝒓𝒂𝒅/𝒔 Fig. 20. Rotor stationary d-axis current at 𝝎𝒔 = 𝟐𝟏𝟎 𝒓𝒂𝒅/𝒔 

  

Fig. 21. Stator stationary q-axis current at optimal 𝝎𝒐𝒑𝒕 =

𝟐𝟐𝟒 𝒓𝒂𝒅/𝒔 
Fig. 22. Stator stationary d-axis current at optimal 𝝎𝒐𝒑𝒕 = 𝟐𝟐𝟒

𝒓𝒂𝒅

𝒔
 

  

Fig. 23. Rotor stationary q-axis current at optimal 𝝎𝒐𝒑𝒕 =

𝟐𝟐𝟒 𝒓𝒂𝒅/𝒔 

Fig. 24. Rotor stationary d-axis current at optimal 𝝎𝒐𝒑𝒕 =

𝟐𝟐𝟒 𝒓𝒂𝒅/𝒔 

5. Conclusion 

A PI controller-free model-based predictive speed control scheme was developed for a squirrel cage IM in a stationary reference frame. A four-

term cost objective function consisting of different weight factors was used in selecting the switching states with the least errors. The efficiency 

improvement scheme developed uniquely computes the stator angular velocity and rotor flux linkage reference that minimize the core and 

copper losses while maintaining a constant slip operation. The results presented show effective performance of the proposed direct MPC scheme 

when step and ramp changes were introduced to the rotor speed and when step change was introduced to the load torque. Comparing the results 

obtained from MPC at optimal stator angular velocity and optimal rotor flux linkage to results from vector control yielded a lower loss regime 

with the MPC. Therefore, the results presented show effective performance of the proposed direct MPC scheme. 
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