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Rubber composite sleepers can experience significant temperature variations in service, causing temperature-induced 

deformation. Real-time monitoring of this deformation is crucial for operational safety and maintenance; however, it is 
costly, time-consuming, and requires substantial resources and personnel. 

Developing temperature-dependent predictive models offers a cost-effective and efficient alternative, providing accurate 

insights into sleeper behaviour under different conditions while saving time, labour, and materials. This study attempts to 
develop a novel deformation model of rubber composite sleepers using response surface methodology (RSM) and machine 

learning (ML) techniques. Platinum temperature (Pt) sensors, embedded at various points on a full-scale rubber composite 

sleeper model, were used to measure both the sleeper temperature field and ambient temperature in real-time at 30-minute 
intervals over the period of a year. Simultaneously, lateral deformation was recorded using linear variable differential 

transducer (LVDT) displacement sensors. The temperature data were filtered to remove noise and normalized based on 

the Log-Pearson Type III outlier detection method and Box-Cox transformation, respectively, before being used to develop 
temperature-dependent models for sleeper deformation. To ensure accurate ML predictions, the dataset was split into 70% 

for training and 30% for testing. Model performance was evaluated using the correlation coefficient (R2), mean square 

error (MSE), root means square error (RMSE), and mean absolute error (MAE). The analysis revealed that the sleeper’s 
body temperature closely follows the changing trend of the ambient environment. Also, like any polymer material, the 

rubber composite sleeper expands when it absorbs heat from sunlight and contracts as it cools when sunlight intensity 

decreases, potentially reversing much of the deformation. The K-nearest neighbour algorithm outperformed the RSM and 
other ML techniques with R2, MSE, RMSE, and MAE values of 0.999, 0.000258, 0.016, and 0.000896, respectively. The 

developed model can serve as an important reference for monitoring lateral deformation for safety and maintenance 
purposes. 

This is an open-access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/) 
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1. Introduction 

The popular materials used in the production of the vast railway sleepers already laid across the world are; timber, concrete, and steel which 

are generally designed for 20, 50 and 50 years, respectively [1-3]. Concrete sleepers are the most commonly used worldwide. 

The oldest sleeper material is hardwood timber, with more than 2.5 billion wooden sleepers installed worldwide. Due to the scarcity of timber 

in many regions, its vulnerability to insect and weather damage, and environmental concerns surrounding the use and disposal of chemically-

treated timber sleepers, the search for alternatives has become a global priority. Fig. 1 depicts a typical aged timber sleeper. 

In the United States, for example, the prestressed concrete sleeper has been used to replace the timber sleeper, especially in heavy haul tracks 

to achieve superior stability, durability and strength capacity, resulting in reduced timber consumption, longer service life, lower maintenance 

costs, and increased eco-friendliness [4]. However, the concrete sleeper does not serve as a sustainable replacement for timber because replacing 

the vast number of timber sleepers worldwide with concrete sleepers is ineffective due to their larger size, heavier weight, higher stiffness, and 

incompatible mechanical properties [5, 8]. 
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Nomenclature & Symbols 

RSM Response Surface Methodology ML Machine Learning  

Pt Platinum Temperature LVDT Linear Variable Differential Transducer 

MSE Mean Square Error RMSE Root Means Square Error 

MAE Mean Absolute Error R2 Correlation Coefficien 

ANOVA Analysis of Variance ANN Artificial Neural Networks 

RF Random Forest KLP Kunststof Lankhorst Product 

MPW Mixed Plastic Waste FFU Fibre-reinforced Foamed Urethane 

SVM Support Vector Machine BP Backpropagation 

HSRSBs High-Speed Railway Suspension Bridges TEMP Considering Factors Such As Temperature 

TDC Time Delay Compensation TLL Train Live Load 

TS Train Side TIP Train Instantaneous Position 

 

Currently, several polymer-based composite sleepers have been developed to serve as sustainable one-to-one replacements for timber sleepers. 

These sleepers were developed to mimic the behaviour of timber sleepers with superior resistance to environmental factors, longer service life 

and vibration mitigation characteristics. Most composite sleepers are made from recycled waste materials such as plastics, fillers, and bitumen, 

effectively reducing the volume of non-biodegradable waste that pollutes the environment. In addition to their environmental benefits, 

composite sleepers also provide a high strength-to-weight ratio, lower noise and vibration levels, and superior damping properties [9]. They are 

also resistant to bioerosion, fire, cracking, moisture, and insect or fungus attacks, while requiring minimal maintenance [10], thereby offering 

a range of technical, economic, and social benefits. However, they have low stiffness, low strength, and exhibit high plastic deformations under 

elevated temperatures [1]. To address the deficiencies in sleepers, reinforcements and modifications have been implemented to enhance their 

properties, thereby increasing their potential for broader application.  

Several composite sleeper technologies have been developed in different parts of the world and are widely used in the United States, Australia, 

and Europe. However, in China, the use of this sleeper type is still limited. Composite sleepers can be classified by their properties and 

designated as type-1, type-2, and type-3 [11]. The following section discusses the types of composite railway sleepers. 

 

Fig. 1. Aged timber sleeper [6] 

1.1 Rubber/Polymer-Based Composite Sleeper 

1.1.1. Sleepers with short or no fibre reinforcements (Type-1) 

Type-1 sleepers are made from either recycled plastic materials (such as plastic bags, scrapped vehicle tyres, plastic coffee cups, milk jugs, and 

laundry detergent bottles) or bitumen combined with fillers like sand, gravel, recycled glass, or short glass fibres less than 20 mm [2]. Due to 

their short length, these fillers do not provide significant reinforcement, making the failure behaviour of these sleepers primarily polymer-

driven. Additionally, these sleepers are highly flexible, causing them to expand and contract considerably with temperature changes, which 

leads to undesirable gauge widening [12]. The notable sleepers in this category are TieTek, Axion, IntegriCo, I-Plas, Tufflex, Natural Rubber, 

Kunststof Lankhorst Product (KLP), Mixed Plastic Waste (MPW), and Wood-core [2, 13-17]. 

1.1.2. Sleepers with long fibre reinforcement in the longitudinal direction (Type-2) 

The Type-2 sleepers are reinforced with continuous glass fibres extending longitudinally while having either no fibres or very short random 

fibres in the transverse direction. [10]. Long glass fibres primarily govern the strength and stiffness in the longitudinal direction, while the 

polymer dominates the transverse direction. These sleepers are mainly suitable for ballasted rail tracks, where stresses in the sleepers are 

governed by flexural loading. However, they are less ideal for bridge applications where the sleepers are subjected to high levels of combined 

flexural and shear forces [2, 12]. The FFU (Fibre-reinforced Foamed Urethane) synthetic sleeper is classified in this sleeper category [2, 18]. 

1.1.3. Sleepers with fibre reinforcement in longitudinal and transverse directions (Type-3) 

Type-3 sleepers incorporate long reinforcement fibres oriented in both the longitudinal and transverse directions, leading to fibre-dominant 

flexural and shear behaviour. The structural performance of these sleepers can be engineered by adjusting the fibre reinforcements in each 
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direction to meet specific performance requirements. [10]. This category includes sandwich polymer sleepers (e.g., glue-laminated sandwich 

composite) and hybrid composite sleepers (e.g., geopolymer concrete-filled pultruded composite) [2].  

The performance of the three types of composite sleepers relative to timber sleepers is presented in Table 1. 

Table 1. The performance of the composite sleepers 

Performance measurement 
AREMA Specification 

Type-1 Type-2 Type-3 
Oak Softwood Glulam 

Density, (kg/m3) 1096 855 960 850-1150 740 1040-2000 

Modulus of elasticity, (GPa) 8.4 7.4 12.0 1.5-1.0 18.1 5.0-8.0 

Modulus of rupture, (MPa) 57.9 49.3 66.9 17.2-20.6 142 70-120 

Shear strength, (MPa) 5.0 4 4 54 10 15-20 

Rail seat compression, (MPa) 4.6 3 3.9 15.2-20.6 28 40 

Screw withdrawal, (kN) 22.2 13.3 n/a 31.6-35.6 65 > 60 

(Adopted from Ferdous et al.,  [2, 19]; Shanour et al [20]) 

Several Static and dynamic tests have been conducted on these different sleepers using experimental methods and numerical calculations, with 

the results well documented in the literature. For instance, Zeng et al. [21], Zeng et al. [22, 23], Zhao et al. [24, 25], Jabu et al. [26], and Zhao 

et al. [27] investigated the vibration reduction characteristics and dynamic behaviours of rubber composite sleepers. Meanwhile, the static 

flexural properties of various composite sleepers have been explored by researchers such as Lotfy et al. [5], Lojda et al. [28], Lofty et al. [29], 

Yu et al. [30], Siahkouhi et al. [31], and Salih et al. [32]. 

Considering the nature of the materials used in composite sleepers, their properties can become polymer-driven when exposed to temperature 

fluctuations during service conditions. The surface and internal temperature variations could lead to temperature-induced deformations. When 

these deformations are restricted by boundary conditions, temperature-induced loading can occur, potentially leading to issues such as crack 

formation, plastic deformation, upwarping, and other defects [33]. Additionally, the sleeper's temperature is expected to closely follow that of 

its surroundings and with the rising air temperatures due to global warming, the risk of composite sleeper deformation increases. These problems 

negatively affect the safety, performance, stability, and strength of the track, while also raising maintenance costs. Currently, there is quite 

limited study on the temperature-induced deformation of the polymer/rubber composite sleeper and to the best knowledge of the authors, there 

are no well-defined limits for the deformation of composite sleepers in a natural environment. Developing accurate temperature-dependent 

predictive models offers a more cost-effective and efficient alternative, providing accurate insights into sleeper behaviour under different 

temperature conditions while saving time, labour, and materials.  

In recent years, statistical approaches such as response surface methodology (RSM), and machine learning (ML) approaches such as artificial 

neural networks (ANN), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGBoost) have emerged as widely 

used techniques for efficiently modelling high-dimensional and non-linear processes in the field of Civil Engineering. ML is widely used for 

engineering predictions due to its ability to learn from experimental/sample datasets (training data). 

Response surface methodology (RSM) has been widely employed for modelling, prediction, and optimization in various research areas, 

including cement concrete [34-41], asphalt concrete [42-45] and railway engineering [46-48] consistently yielding reliable results as reported 

in the literature. Meanwhile, machine learning techniques have also gained extensive application across numerous fields, providing advanced 

capabilities for data analysis and optimization. For instance, using machine learning techniques, Liu et al. [49], proposed a deformation 

prediction based on a backpropagation (BP) neural network for High-speed railway suspension bridges (HSRSBs) considering factors such as 

temperature (TEMP), time delay compensation (TDC), train live load (TLL), the train side (TS) and train instantaneous position (TIP). The 

model was evaluated using a dataset of 10-day field measurements. They concluded that the model is highly accurate with a high coefficient of 

determination (R2) and low error margin. Also, Ramos et al. [50] employed five ML algorithms; multivariable regression, decision tree, random 

forest, ANN and SVM to predict the permanent deformation and respective settlement of railway track. Model performance was evaluated 

using standard metrics such as correlation coefficient, root mean square error etc. They found that the random forest model showed the best 

performance. Considering field data from four different sites, Chen et al. [51] developed a frost heave deformation predictive model based on 

an artificial neural network and long-short-term memory (LSTM) for the high-speed railway subgrade. The results indicate that the LSTM 

model, configured with 12 hidden neurons, achieves optimal performance with a reduced number of parameters. It records an average RMSE 

of 0.0210 mm and an MAE of 0.0138 across all training samples, demonstrating that the model exhibits high precision in this specific scenario. 

Kaewunruen et al. [52] employed four different machine learning techniques namely, deep learning, Bayesian neural network, and random 

forest to investigate the potential of machine learning to predict the capacity of railway prestressed sleepers using a large design data set. Based 

on solar and weather data, Hong et al. [53] predicted rail-temperature using traditional statistical methods and machine learning techniques such 

as extreme gradient boosting (XGBoost), support vector machine (SVM), random forest (RF), artificial neural network (ANN) and second-

order polynomial (PR2). Indraratna et al [54] employed an artificial neural network (ANN) and adaptive fuzzy inference system (ANFIS), to 

predict the resilience modulus of ballast material with loading magnitude, cycle, frequency and confining pressure as explanatory variables. 

Aela et al. [55] utilized four classification algorithms such as support vector machine (SVM), back propagation neural network (BRNN), random 

forest (RF) and Catboost (CB) to predict ballast particle number after breakage with size and shape of particles, material properties and loading 

conditions as input variables.  

Although lots of studies have employed the RSM and ML for modelling and prediction, there are still very limited studies on the modelling of 

the deformation of polymer-based composite sleepers (herein referred to as rubber composite sleepers) under environmental temperatures.  

The current study seeks to develop a novel-rubber composite sleeper (type-1) deformation model based on sleeper body temperatures using the 

response surface method and machine learning techniques. In an attempt to achieve the aim of the study, the sleeper temperature-field variation 

and that of the ambient environment were collected. Also, the correlation of the sleeper temperature (internal and surface) with that of the 

ambient and deformation was obtained. The seasonal variation of the sleeper deformation was presented by selecting typical days in each 

season. Furthermore, the response surface method (RSM), XGBoost, CatBoost, and RF regression tool were employed to predict the 

deformation of the rubber composite sleepers while considering the average internal and external sleeper temperatures as input variables. The 
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performance of the models developed was evaluated using coefficient of determination (R2), mean squared error (MSE), root mean square error 

(RMSE), and mean absolute error (MAE). To meet the split requirements of the datasets in ML prediction, the authors relied on the body of 

literature to enable them to arrive at a split that will give an optimum prediction,  

The novelty of this study is that the developed models can significantly reduce the time, energy and cost required for expensive experimentation 

as well as serve as a guide to monitor/check the deformation of the rubber composite sleeper under service conditions for safety and maintenance. 

2. Materials and Method 

2.1. Materials 

The experimental set-up in this study consists of the rubber composite sleeper, the pt. 100 temperature sensors, a data acquisition device and a 

computer. The rubber composite sleeper was supplied by Tianjin Yanwen Weiye Plastic Product Cooperation, Tianjin, China. The geometrical 

characteristics as well as performance properties are shown in Table 2.  

Table 2. Dimensional and Properties of Rubber Composite Sleeper from Laboratory Experiments 

Properties Length 

(m) 

Width 

(m) 

Depth 

(m) 

Mass  

(Kg) 

Gauge  

(m) 

Density  

(Kg/m3) 

Modulus of Elasticity 

(MPa) 

Rubber composite sleeper 2.5 0.22 0.16 125 1.435 1397      1552 

 

Pt 100 which is considered as reliable and accurate device for measuring temperature [56] was used to collect temperature measurements at the 

sleeper surfaces (top, bottom, left side and right side) and from 55mm depth from the surfaces.  

The sensor was developed by Huaian Sen Ling Instrument Co Ltd, China following DIN/IEC 60751 (or simply IEC751) standards. The data 

acquisition system used in this study is the JM3812 multifunctional static strain gauge developed by Yangzhou Jingming Technology Co., Ltd, 

in China. The data acquisition system served as a bridge between the sensors and the computer. A Windows-based powerful software (JMTest) 

installed in the system was used for visualizing the data measurement and acquisition. The computer has the specification as follows; Windows 

10, 64-bit with, 16 GB RAM, high-speed USB port, Intel ®, core ™ i5-4200U @ 2.30GHz was used to acquire the data.  

2.2. Full-scale experimental model with the arrangement of sensors for measuring temperature field and deformation 

To achieve the connections necessary for the collection of temperature-field distribution as well as resulting deformation in the rubber composite 

sleeper, one end of the temperature sensor was placed at the surfaces and 55mm depth from the surfaces (top, bottom, left side, and right side), 

and the other ends of each sensor was connected to the data acquisition device which was ultimately connected to a computer. In contrast, the 

ambient temperature was collected by placing one end of the sensor in the data acquisition device and the other end in an open box. Added to 

the temperature collection set-up is the linear variable differential transducer (LVDT) displacement sensor that was used to collect the lateral 

deformation of the sleeper on both ends of the sleeper (left and right positions). Both temperature distribution and deformation were collected 

(at 30-minute intervals) through the data acquisition device on the computer in real-time (see Fig. 2). Windows-based powerful software 

(JMTest) is installed in the system to visualize the data measurement and acquisition. A Windows 10, 64-bit computer with, 16 GB RAM, high-

speed USB port, Intel ®, core ™ i5-4200U @ 2.30GHz was used to acquire the data.  

The temperature data was collected for one year (09/10/2019 to 09/10/2020), making a total of 15,764 readings per sensor, except where there 

are system/power failures. The experimental set is shown in Fig. 2. The temperature of the inner and outer surfaces of the sleeper with their 

corresponding deformation served as the basis for the development of temperature-dependent lateral deformation models of the rubber 

composite sleeper.  

(a) (b)

 

Fig. 2. Experimental set-up; (a) the measurement system, (b) the sensor arrangement 

Where; 1- Rubber composite sleeper, 2- LVDT sensor, 3- Temperature sensor placed on the left side surface and at 55mm depth from the left 

side, 4 - Temperature sensor placed on the sleeper top surface and at 55mm depth from the top, 5 - Temperature sensor placed on the right-side 

surface and at 55mm depth from the right side 6 - Temperature sensor placed on the sleeper bottom surface and at 55mm depth from the bottom, 

7- Computer central processing Unit (CPU), 8- Computer keyboard, 9- Computer monitor, 10 - Data acquisition device 11- support. 
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2.3. Development Temperature-dependent lateral deformation of rubber composite sleeper 

2.3.1. Data collection and Model Structure  

The 15,764 individual rubber composite sleepers body temperatures obtained from laboratory experiments over on year were filtered to remove 

noise and normalized based on the Log-Pearson Type III method of outlier detection method and Box-Cox transformation respectively. The 

clean and normalized dataset was used to develop temperature-dependent models of sleeper deformation via different algorithms; Response 

Surface Methods (RSM), CatBoost, Random Forest, XGBoost and K-nearest neighbour. Consequently, a total of 10,609 datasets were used for 

model development. 

The identification of outliers using the Log-Pearson Type III method can detect both low and high outliers. The high and low outliers in the 

dataset were determined using Equations 1 and 2 respectively: 

YL = Ý+ KN SY                                                                                                                              (1) 

YL = Ý - KN SY                                                                                                       (2) 

Where YL is the log of high or low outlier limit, Ý is the mean of the log of the sample flows, SY is the standard deviation of the logs of the 

sample flows and KN is the critical deviate of the data set. 

The Box-Cox transformation is applied to models/datasets that deviate significantly from a normal distribution or have high skewness, kurtosis, 

and heteroscedasticity. The Box-Cox transformation, however, helps to satisfy the assumptions of normality, improves the performance of the 

models by reducing heteroscedasticity, and makes it easier to interpret the model results. The Box-Cox transformation equations are shown in 

Equations (3) and (4). 

𝑦𝑖
(𝜆) =  𝑥𝑖

′𝛽 + ∈𝑖 , 𝑖 = 1, … … , 𝑛,                                                                              (3) 

Where  

𝑦𝑖
(𝜆) =  {

(𝑦𝑖
𝜆−1)

𝜆
,   𝜆 ≠ 0,

log 𝑦𝑖 ,           𝜆 = 0,
                                                                               (4) 

𝑦𝑖
(𝜆) = is called the Box-Cox transformation of yi, β = (β0, ∙ ∙ ∙, βp−1 ) is the p-dimensional vector of unknown regression coefficients, and ∈i is 

an error term independently following N(0, σ2 ). 

The descriptive statistics of the temperature and deformation data, experimentally collected and used for model development, are shown in 

Table 3.  

Table 3. Descriptive statistics for input and output parameters used in model development 

S/No Parameters Units Role Minimum value Maximum value Mean Standard deviation 

1 Top surface 0C Input 1.580 44.600 21.604 10.546 

2 Bottom surface 0C Input 2.421 48.100 20.897 8.898 

3 Left surface 0C Input 1.325 43.210 24.398 13.630 

4 Right surface 0C Input 1.500 42.500 21.657 10.025 

5 55mm from the top surface 0C Input 1.753 47.000 20.883 9.077 

6 55mm from the bottom surface 0C Input 1.545 43.567 23.100 10.180 

7 55mm from the left surface 0C Input 1.980 45.336 21.758 10.353 

8 55mm from the right surface 0C Input 1.346 45.336 21.236 10.336 

9 Deformation mm Output -4.805 6.073 0.3630 1.752 

 

To develop the prediction equations for the temperature-dependent deformation of rubber composite sleeper, the sleeper body temperature and 

their corresponding lateral deformation collected in the experiment were used. It should be noted that the sleeper body temperature both inner 

and surface (as in Table 2) showed a consistent/similar trend. The same trend/result was obtained between the sleeper's body temperature and 

the ambient. On this note, the average of the inner and surface temperatures at all measuring points have been aggregated to represent the inner 

and surface temperature of the sleeper respectively.  Thus, to simplify the model, an average of inner and surface temperature was considered. 

The objective behind this modelling process is that it can serve as a quick guide and reference for knowing the maximum sleeper deformation 

once the ambient (from measuring stations) or sleeper body temperature is known.  

The model is expected to result in significant savings in terms of testing time, technician and equipment costs, as well as data processing and 

analysis time. Mathematically, the developed equation has the following structure: 

𝐷𝑒𝑓𝑠𝑙𝑒𝑒𝑝𝑒𝑟 = (𝑇𝑠, 𝑇𝑖)                                                                                                     (5) 

Equation 1 shows that the rubber composite sleeper deformation is a function of average surface temperature; 𝑇𝑠 and average internal , 𝑇𝑖. 

2.4. Statistical modelling using RSM and machine learning  

2.4.1. Response surface method (RSM) 

The response surface method (RSM) introduced by Box and Wilson in 1951 is a powerful statistical tool for optimum condition search, model 

construction, factor effect analysis, and experimental design [35]. The method is specifically known for establishing a relationship/implication 

between input variable(s) on output(s)/response via a statistical approach using regression equations as presented in Equation (6). 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑘
𝑛 + ∑ 𝛽𝑖𝑖𝑥𝑖

2𝑘
𝑛 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘
𝑛 +∈                                                                                                                                 (6) 
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Where 𝑦 is the dependent variable (deformation), 𝛽0 is a constant coefficient, 𝛽𝑖 , 𝛽𝑖𝑖  and 𝛽𝑖𝑗  are the regression coefficients for linear, quadratic 

and interaction terms, respectively, 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗 are the independent variables (internal and surface sleeper temperature), while ∈ is the error. 

The model terms were selected based on a 95% confidence level and the consistency of the model fit based on the regression coefficient (R2). 

Validation was carried out using adequate precision (signal-to-noise ratio) and agreement between the adjusted R2 and the predicted R2. Finally, 

based on the interactive effect between the independent variables, i.e., surface and internal temperatures, the 2D and 3D plots were generated 

for verification. The RSM Design Expert version 13 statistical package was used to implement the prediction in this study.  

2.4.1. Machine Learning (ML) method 

For the ML modelling, the sleeper body temperature (average inner and surface) was treated as the explanatory variable (two variables) while 

the deformation was the response variable.  

In the current study, 70% (7420 data points) and 30% (3180 data points) of total data points were assigned to the training/model construction 

dataset and testing/validation dataset, respectively similar to the previous related study [57].  

In this study, the selected machine learning techniques are random forest (RF), CatBoost, extreme gradient boost (XGBoost), and K-nearest 

neighbor (KNN). The flowchart of the machine learning procedure implemented in this study is presented in Fig. 3. 

Experimental data
-Sleeper body 

-Temperature -Ambient temperature 

– lateral deformation 

Filtering of data

Partitioning of data in 

training and testing set Correlation analysis

Building of Model
-RSM, KNN, XGBoost, RF, CatBoost

Tuning Model Parameter
-Model parameter tuned using validation data 

set

Evaluation of model parameter

RMSE MSE MAE R square

Selection of best model 
Best model selected based on performance metrics

Reporting
Based on model comparison and evaluation metrics

 

Fig. 3. Flow chart of machine learning procedure implemented in this study 

The following section gives a detailed explanation of the methodology employed to achieve the result of the ML predictions. 

2.4.2. Random Forest (RF) 

A regression method called random forest is an advanced version of bagging that combines the effectiveness of numerous decision tree 

algorithms to predict variable values [58]. The random forest method is one of the most practical methods of ensemble learning [58] and it 

applies to both linear and nonlinear data in regression and classification problems.  

In the random forest process, an algorithm is used to construct a decision tree in the forest for each training dataset (Fig. 4). Thus, several 

decision trees (predictions) are developed and the final RF prediction model is based on an average of the decision trees utilizing the most 

popular approach [59] thus, making it less prone to overfitting. The averaging for regression application is based on Equation (7) [60]. 

𝑓(𝑥) =
1

𝐽
∑ ℎ𝑗(𝑥)𝐽

𝑗=1                                                                                                                                                                                                             (7)

   

Herein, hj (x) refers to the set of base learners. 

The optimized hyperparameters used for RF in this study are as follows; n_estimators = 590, min_samples_split = 14, min_samples_leaf = 3, 

max_features = auto', max_depth = 17. 

2.4.3. Extreme Gradient Boosting (XGBoost) 

XGBoost refers to an ensemble of classification and regression (CART) [61]. It belongs to the category of efficient gradient-boosted trees that 

minimize search space for possible feature splits by utilizing the feature distribution across all data points in a leaf [62].  
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At each iteration, the algorithm produces a weak learner and accumulates it into the overall model. If the weak learner corresponds to the 

gradient direction of the loss function, then, the learning method is called a gradient-boosting machine [61]. XGBoost is well recognized for its 

scalability, parallelization, optimization capacities and accuracy [63]. Detailed explanations of the XGboost algorithms can be found in other 

works of literature such as that of Chen and Guestrin [64]. However, the loss of function can be expressed mathematically as presented in 

Equation (8) [65]. 

 

Fig. 4. The architecture of the RF 

∑ 𝐿 = [𝐺𝑗𝑚𝑤𝑗𝑚
𝑇𝑚
𝑗=1 +

1

2
(𝐻𝑗𝑚 + 𝜆𝑅)𝑤𝑗𝑚

2 + 𝛼𝑅|𝑤𝑗𝑚|] + 𝛾𝑇𝑚                                                                                         (8) 

Here, L represents the loss function, 𝛼𝑅 and 𝜆𝑅 refer to the L1 and L2 regularization terms respectively. 𝛾 denotes the Lagrangian multiplier 

also known as the penalty terms, 𝐻𝑗𝑚 s sum of hessian used to estimate the least number of child weights and 𝐺𝑗𝑚 is the sum of the gradient. 

𝑇𝑚 and 𝑤𝑗𝑚 refer to optimal weights and leaves trees over maximum depth Dmax. 

The optimized hyperparameters used for XGBoost in this study are as follows; lambda = 1.0, alpha = 0.001, n_estimators = 300, max_depth = 

9, learning rate = 0.01, gamma = 0.22222. 

2.4.4. K-nearest neighbor (KNN) 

The K-Nearest Neighbor (KNN) is a supervised ML algorithm used for nonlinear regression. It can predict unseen data (testing data) by sorting 

and finding the data points closest to the training dataset, thus referred to as nearest neighbours [66]. The KNN algorithm utilizes a distance 

function, typically, the Euclidean function, for continuous variables to measure the similarity between training and testing datasets  [67].  

The KNN algorithm suggests that data with similar trends will cluster together within a space, thus enabling the identification of K nearest 

points to the input data under investigation. Consequently, the algorithm makes decisions based on nearest point information [67].  

To evaluate the Euclidean distance between each unknown data point and the sample plot, Equation (9) was employed.  

𝛾 = √∑ (𝑢𝑘 − 𝑣𝑘)2𝑚
𝑘=1                                                         (9) 

𝛾 represent the spectral distance between the u and v in n-dimensional space, 𝑢𝑘  and 𝑣𝑘  represent the spectral values of the unknown variable 

and v in the Kth selected spectral variable, respectively.  

Through a trial-and-error process, the following hyperparameters were used in the optimized KNN model: weights = 'distance', p = 2, 

n_neighbors = 14, algorithm = ball_tree.  

2.4.5. CatBoost 

Catboost is a supervised ML technique based on the gradient-boost decision tree method [68]. It can handle nonlinear datasets, missing data, 

and categorical data. Furthermore, it has a strong learning capacity [69].  

It brings together two boost modes, namely; ordered target statistics and ordered boosting [70]. ‘‘The plain mode is the traditional gradient 

boosting decision tree (GBDT) algorithm which incorporates an ordered target statistic [65] while the ordered boosting as described by 

Prokhorenkova et al. [71] is an effective modification of the ordered-boosting algorithm.  

The Catboost algorithm employs decision trees as a base weak learner and fits the gradient boosting sequentially to the decision tree [72]. 

Through gradient descent (Equation 10), each new tree is expected to exhibit a lower loss than the prior trees [68, 73].   

ℎ𝑡 = 𝑎𝑟𝑔ℎ∈𝐻𝑚𝑖𝑛E {L (y,𝐹𝑡−1(𝑥)  +  ℎ(𝑥)) }                                                                                                 (10) 
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Herein y denotes the output, and h represent a gradient step function selected from H, a family of functions. Furthermore, the step function can 

be calculated using Equation (11) 

𝒉(𝒙) = ∑ 𝒃𝒋 ∥{xϵRj}
𝑱
𝒋=𝟏                                                                                                                                                                                                                                                     (11) 

Herein, 𝑅𝑗  represent the disjointed region that corresponds to tree leaves while 𝑏𝑗  represent the predictive value of the region, and  ∥ is an 

indicator function. 

In the CatBoostRegressor, the following parameters were considered: n_estimators = 650, max_depth = 7, and learning_rate = 0.01 to improve 

model performance.  

2.5. Hyperparameter tuning by K-Fold cross validation 

In the field of machine learning, the performance is largely influenced by the values of the hyperparameters and this is referred to as tunning. 

The appropriateness of the value range of the hyperparameter(s) relies to a great extent on the user’s intuition and experience. 

In this study, the GridSearchCV function in the Python library Scikit-learn was used considering the size of the dataset to obtain the best set of 

hyperparameters. The GridSearchCV utilized a default of 3-fold cross-validation (k=3); however, to optimize the accuracy of the 

hyperparameter combination in this study, a k value of 5 was used. A k value of 5 implies that the data set was randomly split into 5 subgroups 

and at each time one of the subgroups was used to validate the model while the other 4 were used for model development (training). This allows 

for improved model accuracy and fewer tendencies for overfitting. Thus, the optimized parameters used to obtain high-performance models for 

each of the machine-learning languages are as follows. 

2.6. Evaluation of Model Performance  

To assess the performance of the developed models, different indicators such as correlation coefficient (R2) and Root mean squared error 

(RMSE) [74-78] were used. 

2.6.1. Mean Square Error (MSE) 

Mean square error (MSE) equation 12 is an error metric that measures the appropriate standard deviation of the relative error margin between 

the experimental/measured and the predicted value in modelling [72]. 

𝑀𝑆𝐸 =  1 − 
∑ (𝑃𝑖 − 𝑀𝑖)2𝑛

1

𝑁
                                                      (12) 

2.6.2. Root Mean Squared Error (RMSE)  

Root Mean Squared Error (RMSE) (Equation 13) is a commonly used error metric in modelling studies. It is the square root of mean square 

error (MSE) - a statistical estimator that measures the average of the squares of the errors between the observed and predicted values. Here, the 

prediction errors are quantified in terms of the units of the variables calculated by the model [78]. The value ranges from zero to infinity, and 

an RMSE is zero (0) indicates a perfect fit. The RMSE value can be calculated as follows [79-82]: 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑖 − 𝑀𝑖)2𝑛

𝑖=1

𝑁
                                          (13) 

Where P and M are the predicted and measured deformations, and n is the number of input samples. 

2.6.3 Coefficient of determination (R2)  

The coefficient of determination (R2) (Equation. 14) is the square of Pearson’s product-moment correlation coefficient. This measures the 

degree of collinearity between simulated and observed data [78]. The accuracy of a model is defined by its coefficient of determination (R2).  

For the effective model, its value should be close to 1, and a value greater than 0.8 presents a high accuracy of the model [83]. An R2 value 

close to 1 and lower values of errors (MAE, RRMSE, RMSE, and RSE) indicate higher accuracy of the model [77]. The R2 value can be 

calculated as follows [84]: 

𝑅2 =
∑ (𝑀𝑖 − 𝑀𝑖𝑎𝑣𝑔) (𝑃𝑖−𝑃𝑖𝑎𝑣𝑔)𝑛

1

√∑ (𝑀𝑖 − 𝑀𝑖𝑎𝑣𝑔)2𝑛
1  ∑ (𝑃𝑖 − 𝑃𝑖𝑎𝑣𝑔)2𝑛

1

                                              (14) 

Where P is the predicted deformation, M is the measured deformations, 𝑀𝑖𝑎𝑣𝑔 average measured deformation, 𝑃𝑖𝑎𝑣𝑔 is the average predicted 

deformation and n is the number of input samples 

2.6.4. Mean Absolute Error (MAE)  

Mean Absolute Error (MAE) is a model evaluation metric used with regression models. The mean absolute error of a model concerning a test 

set is the mean of the absolute values of the individual prediction errors over all instances in the test set [85]. The Mean absolute error (MAE) 

score is measured as the average of the absolute error values. The Absolute is a mathematical function that makes a number positive. Therefore, 

the difference between an expected and predicted value can be positive or negative and will necessarily be positive when calculating the MAE 

[86]. The MAE value can be calculated as follows[79-82]: 

𝑀𝐴𝐸 =   
∑  |𝑃𝑖 − 𝑀𝑖|2𝑛

𝑖=1

𝑁
                                                      (15) 

Herein, P is the predicted deformation, M is measured deformations, and n is the number of input samples. 

For model performance evaluation, generally, a high R2 and a lower error metric are considered desirable. 

https://doi.org/10.1007/978-0-387-30164-8_550
https://doi.org/10.1007/978-0-387-30164-8_710
https://doi.org/10.1007/978-0-387-30164-8_820
https://doi.org/10.1007/978-0-387-30164-8_820
https://doi.org/10.1007/978-0-387-30164-8_406
https://doi.org/10.1007/978-0-387-30164-8_820
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3. Results and Discussions 

This section presents the results of temperature-field variation on the rubber composite sleeper. Also, the results of temperature-dependent 

deformation of the sleeper using different prediction methods were presented and evaluated. Finally, the model that best predicts the deformation 

of the rubber composite sleeper was selected based on the performance evaluation criteria highlighted in section 2.4. 

3.1. Temperature variation of rubber composite sleeper under natural temperature conditions 

Fig. 5(a) presents the temperature-field variation of the rubber composite sleeper at surfaces (top, bottom, left and right) and 55mm depth from 

the surfaces (internal). The result shows that due to the effect of direct solar radiation and convective heat transfer, the sleeper body (surface 

and at 55mm depth) temperature field exhibited a similar and consistent changing pattern over different seasons with very insignificant 

differences. 

A similar trend was observed between the sleeper body temperature (both surface and internal) and those of the ambient/environmental 

conditions. To further elucidate the similarity of the trend of the sleeper body temperature-field and the environment, the average internal and 

surface temperature of the rubber composite sleeper was compared to those of the ambient temperature as presented in Fig. 5(b) and results 

further confirm the observation in Fig. 5(a). The very little difference between the surface and the inner temperature is an indication of no or 

recoverable temperature-induced deformation of the sleeper during the testing period of one year.   

This result agreed with the AREMA manual which states ‘‘that dimensional changes in the composite sleeper do not occur instantaneously with 

the change in ambient temperature’’. It should be noted that the sleeper's ambient environment has a significant influence on the temperature-

field distribution of the sleeper, thus, the ambient temperature can substitute the sleeper’s body temperature where the luxury of cost and time 

isn’t readily available.  

To further explore the relationship between the internal/external temperature with ambient as well as deformation, correlation analysis was 

performed to measure the strength of the relationship/association between them and the result is presented in Fig. 6. 

According to Fig. 6(a) and (b), there is a significant positive association between the surface and ambient temperatures (correlation coefficient 

= 0.968) and between the internal and ambient temperatures (correlation coefficient = 0.983). This suggests that the surface and internal 

temperatures rise or fall as the outside temperature does. As a result, the ambient temperature is responsible for roughly 96.8% and 98.3% of 

the sleeper's surface and internal temperatures, while 3.2% and 1.7% of those temperatures can be attributed to the sleeper's material type, 

resistivity, humidity, conduction, etc. The close relationship or correlation between the ambient temperature and the internal or surface 

temperature of the sleeper suggests that, in the absence of the sleeper's body temperature, the ambient temperature present in the meteorological 

station can be relied upon to provide a highly accurate prediction of sleeper deformation. However, the two factors considered for prediction in 

this study are the average surface and internal temperatures collected during the one-year experiment. 

The results from Fig. 6(c) and (d) show that there is a fair positive correlation between the sleeper’s internal/surface temperature and the 

sleeper’s deformation. Also, the Fig. 6 showed that the sleeper's internal temperature contributes more to the sleeper’s deformation compared 

to the surface temperature.  

3.2. Seasonal variation of the lateral deformation of rubber composite sleeper  

To explore the deformation properties of the rubber composite sleeper over different seasons, typical days in each season were considered and 

the plot is presented in Fig. 7. According to Fig. 7, the left, right and total deformation of the rubber composite sleeper showed similar and 

consistent trends. The deformation of the rubber composite sleepers gradually increases as the ambient temperature increases and vice versa. 

On a general note, the deformations of the sleeper decrease with a decrease in sunlight intensity from nightfall until they reach their maximum 

negative value at midnight and the early hours of the day. Then, they begin to gradually increase after daybreak with an increase in the intensity 

of the sunlight until they reach their maximum positive value. After which it begins to decrease again. This cycle continues daily without 

exceeding the elastic limits of the sleeper material. 

a b

 

Fig. 5. Temperature variation of rubber composite sleeper under ambient conditions; (a) at different measuring points (internal and external), 

(b) average of internal and external 
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(a) (b)

(c) (d)

 

Fig. 6. Correlation analysis; (a) relationship between ambient and surface sleeper temperature, (b) relationship between ambient and internal 

sleeper temperature, (c) relationship between deformation and surface temperature, (d) relationship between deformation and surface 

temperature 

The maximum positive and negative deformations of the rubber are approximately -0.67 and 0.9 mm in autumn, -0.32 and 0.25 mm in winter, 

-0.75 and 2.75 mm in spring, and -1.25 and 5.3 mm in summer. The maximum positive and negative deformations occurred at 16:30 and 17:30 

hrs, and 7:30 to 10:30 hrs, respectively. 

From the foregoing, it can be observed that most polymer materials, including those used in railway sleepers, exhibit significant thermal 

expansion when heated. This property means that as the polymer absorbs heat from sunlight, its volume increases. This expansion can lead to 

deformation if the increase in volume is constrained by adjacent materials or the sleeper's structural design. When the intensity of sunlight 

decreases, the polymer cools and contracts, potentially reversing some of the deformation.  

3.3. Statistical modelling of sleeper temperature-dependent deformation using RSM 

3.3.1. Model fitting  

To establish the relationship between sleeper body temperature and deformation, regression analysis was conducted to determine the coefficients 

of model terms. Table 4 shows the ANOVA of the sleeper deformation predicted response surface model. The Table 4 shows the sum of squares, 

F-value, and P-value at the 0.05 significance level. The p-values less than 0.05 were used to evaluate the significance of each coefficient, thus 

indicating a desired agreement between the experimental and predicted results. 

Based on Table 4, a quartic polynomial model was selected as the best to predict sleeper deformation. The model was selected based on the 

polynomial of the highest order in which additional terms are relevant and not aliased by the software. However, a stepwise model reduction 

was applied to the quartic model with p-values <0.05 to eliminate insignificant terms, and the reduced terms in the quartic model are presented 

in Table 4. 

The results from Table 4 show that the quartic model with an F-value of 5674.45 and p-value <0.05 implies the model is significant, and there 

is only a 0.01% chance that an F-value this large could occur due to noise. The model terms (A, B, AB, A², B², AB², A³, A⁴) had p-values <0.05 

which indicates that these terms significantly improve the model. The significance of the model terms reveals that the model terms have a 

synergistic effect on the regression model [36]. The Lack of Fit (LoF) F-value of 6.80 implies that the model is statistically fit as it is greater 
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than 0.05, as reported by Usman [42]. The final model equation for the deformation of the rubber composite sleeper is illustrated in Equation 

(16). 

-2.94 – 0.61A + 1.45B – 0.045AB – 0.020A2 – 0.013B2 + 0.000512AB2 + 0.0022A3 – 0.000028A4                                                                                         (16) 
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Fig. 7. Daily changes in the vertical temperature of rubber composite; (a) Summer, (b) Spring, (c) Winter, (d) Autumn 

Table 4. ANOVA results for responses 

Source Sum of Squares df Mean Square F-value p-value  

Model 22217.55 8 2777.19 5674.45 < 0.0001 Significant 

A-Surface 1599.97 1 1599.97 3269.11 < 0.0001  

B-Internal 1644.98 1 1644.98 3361.07 < 0.0001  

AB 322.64 1 322.64 659.24 < 0.0001  

A² 1516.70 1 1516.70 3098.97 < 0.0001  

B² 18.35 1 18.35 37.49 < 0.0001  

AB² 189.38 1 189.38 386.95 < 0.0001  

A³ 18.49 1 18.49 37.78 < 0.0001  

A⁴ 768.29 1 768.29 1569.79 < 0.0001  

Residual 5187.86 10600 0.4894    

Lack of Fit 5164.36 10282 0.5023 6.80 < 0.0001 Significant 

Pure Error 23.50 318 0.0739    

Cor Total 27405.41 10608    
 

3.3.2. RSM validation of model 

In the RSM interpretation of model results, an adequate precision (the signal-to-noise ratio) greater than 4 is the desirable measure. The adequate 

precision of 444.760 obtained from the analysis indicates a strong signal. Thus, this model can be used to navigate the design. The deformation 

model regression was evaluated using the coefficient of determination, R2 which gave a high value of 0.8107 from the ANOVA results presented 

in Table 5. The high R2 indicates a good agreement between the experimental measurement and predicted calculations. 

Table 5. ANOVA results for response 

Std. Dev. Mean C.V. % R² Adjusted R² Predicted R² Adeq Precision 

0.6996 9.17 127.13 0.8202 0.8201 0.8197 444.760 

 

Furthermore, the Predicted R² of 0.8197 is in reasonable agreement with the Adjusted R² of 0.8201, i.e., the difference is less than 0.2. From 

the foregoing, it can be deduced that the model presents an explicit type of relationship between the sleeper’s body temperature (independent 

variable) and deformation (dependent variable). 

3.3.3. Verification of model adequacy 

The normal plot of residuals and the plot of actual versus predicted values of the sleepers' deformation were used to verify the adequacy of the 

model adopted, and the results are presented in Fig. 8(a) and 8(b). Fig. 8(a) shows a normal plot of residuals of the sleepers' deformation that 
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almost lies on the inclined straight line, which implies that the assumption of normal distribution is satisfied. The plot of actual versus predicted 

values in Fig. 8(b) also shows that almost all the values spread around the inclined straight line (equality line), which indicates that the prediction 

of the model is quite adequate as the actual and calculated deformations agree closely. 

(a) (b)

 

Fig. 8. Deformation response plot; (a) Externally studentized residual versus predicted deformation, (b) predicted versus actual plot  

3.3.4. The interactive effect of internal and external temperature on deformation 

The interactive effect of the two independent variables (internal and external sleeper temperature) on the response (deformation) in 2-D and 3-

D. 

The 2-D contour plot presented in Fig. 9(a) shows that overall contour lines are semi-elliptical in shape and most of the observation points lie 

around the equality, suggesting a very strong relationship between the internal and surface variables (model input variables). 

Moreover, the result showed that the deformation of the sleepers increases as both internal and surface temperatures increase. For the surface 

temperature, however, the most deformation occurred around 32.23oC – 39.98 oC, corresponding to an internal temperature of 28.4oC – 47.03 

oC. The 3-D result from Fig. 9(b) shows the deformation response of the sleepers to temperature. The blue region shows the area with decreased 

deformation (i.e., contraction), and the red region shows the sleeper area with increased deformation (i.e., expansion). This revealed that the 

deformation of the sleeper is more sensitive to changes in internal temperature than surface temperature. As the internal temperature rises, the 

atoms within the material gain energy, which enhances their mobility. The increased mobility allows the atoms to rearrange and glide past each 

other, leading to a change in shape. Moreover, the result showed that surface temperature from 30.3 – 39.98oC and internal temperature from 

23.8 – 47.03oC leads to expansion in the sleepers, while surface temperature from 1.23 – below 39.98oC and internal temperature from 0.52 – 

below 23.8oC leads to contraction in the sleepers. 

(a) (b)

 

Fig. 9. Contour Plot of Sleepers Deformation; (a) 2-Dimensional, (b) 3- Dimensional  

3.4. Machine learning techniques model evaluation (basic model) 

To obtain the results of the basic model for XGBoost, CatBoost, KNN, and RF regressions, the default settings were employed and evaluated 

via accuracy and error metrics. The result is shown in Table 6. 

Evaluating the performance of the basic model for the various machine learning techniques as shown in Table 6, based on the R2 and the error 

metrics values, revealed that the KNN outperformed other machine learning techniques by presenting the highest R2 value and lowest error 

metrics. However, all the machine learning algorithms presented high values of the R2 and low values of MSE, MAE and RMSE indicating that 
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they are all capable of predicting the rubber composite sleeper deformation with high accuracy. Although all the different algorithms yielded 

good results with reasonable accuracy, an improvement was sought and applied to each model via a gridsearch algorithm capable of combining 

different hyperparameters to enhance the performance of the basic model. Consequently, the results of the improved models are presented as 

follows. The performance of the optimized model is presented in Table 7. The optimized hyperparameters that gave the best results have been 

presented earlier in the method section. 

Table 6. Comparison of ML model performance metrics (Basic model) 

S/n Model R2 MSE RMSE MAE 

1 Random forest 0.884 0.298 0.546 0.366 

2 XGBoost 0.891 0.279 0.528 0.371 

3 CatBoost 0.898 0.263 0.513 0.371 

4 K nearest Neighbors 0.899 0.259 0.501 0.342 

Table 7. Comparison of model performance metrics (optimized model) 

S/n Model R2 MSE RMSE MAE 

1 Random forest 0.943 0.148 0.385 0.267 

2 XGBoost 0.928 0.186 0.431 0.325 

3 CatBoost 0.858 0.369 0.607 0.463 

4 K nearest Neighbors 0.999 0.000258 0.016 0.000896 

 

From Table 7, it can be observed that the R2 values for all the algorithms tend to be improved with the optimization of the algorithms while the 

error margin decreases. Similar to the basic model, the optimized model results indicate that all the algorithms can predict the deformation of 

rubber composite sleepers with high accuracy. However, the KNN demonstrated the best predictive power with R2 value of 0.99 and MSE, 

RMSE and MAE values of 0.000258, 0.016, and 0.000896 respectively. Although the basic model had the potential to predict the deformation 

of rubber composite sleepers with a reasonable level of precision, the predictive power of the models was improved using Gridsearch 

optimization. 

Fig. 10 evaluated the predictive potential of the different ML algorithms to predict sleeper deformation. In Fig. 10(a-d), the correlation 

coefficient values of the RF, CatBoost, XGBoost, and KNN are 0.96, 0.95, 0.96, and 0.96 respectively, which indicates that the actual and 

predicted deformation of the rubber composite sleeper have a very strong positive relationship. To investigate the relationship between the 

actual and predicted deformation of the rubber composite sleeper, the point-to-point relative deformation was plotted and displayed in Fig. 11. 

The results indicate that all algorithms predicted the sleeper's deformation with minimal error margins. Also, the performance evaluation metrics 

of the different machine learning algorithms were explored and presented in Fig. 12. The result further proved that the KNN algorithm best 

predicts the temperature-dependent deformation of rubber composite sleepers by presenting the highest R2 and lowest RSME, MSE, and MAE 

values. 
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Fig. 10. Scatter plots of predicted sleeper deformation compared to sleeper deformation using different models algorithms; (a) RF, (b) 

Catboost, (c) XGBoost, (d) KNN 
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Fig. 11. Performance plot of experimental and predicted deformation with error margin; (a) RF, (b) Catboost, (c) XGBoost, (d) KNN 

 

Fig. 12. Model Performance evaluation criteria (R2, MAE, MSE and RMSE) for different algorithms 

Table 8 compares the machine learning algorithms with the response surface methodology. The results obtained revealed that all the prediction 

algorithms employed in this study can predict sleeper deformation from temperature data with a very high level of accuracy with R2 above 80% 

and low error metrics. It is worth noting that the KNN machine learning algorithm outperformed the other ML algorithms and the RSM. 

Table 8. Comparison of ML algorithms model performance with RSM 

S/n Model R2 MSE RMSE MAE 

1 Response surface methodology 0.820 1.788 1.337 1.0527 

2 Random forest 0.943 0.148 0.385 0.267 

3 XGBoost 0.928 0.186 0.431 0.325 

4 CatBoost 0.858 0.369 0.607 0.463 

5 K nearest Neighbors 0.999 0.000258 0.016 0.000896 
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6. Conclusion 

The study attempted to develop a novel rubber composite sleeper-temperature deformation model using a designed measuring system to collect 

sleeper body temperature and its corresponding deformation over one year. Based on the data obtained, the models were developed and 

compared using the response surface methodology, RF, CatBoost, XGBoost, and KNN model regressions. These algorithms have not been used 

to predict the temperature-dependent deformation of rubber composite sleepers previously. The RSM was executed using Design Expert version 

13 software, while ML was executed in Python programming language. The dataset in this study for ML was split into two fractions for training 

(70%) and testing (30%). The data was cleaned and normalized for the accuracy of the prediction model. The following are the conclusions 

deduced from the study. 

▪ The temperature field on the sleeper surface body (Internal and surface) displayed a very similar and consistent changing trend with the 

ambient temperature. Thus, in the absence of sleeper body temperature or where there is a need to obtain quick reliable deformation of the 

rubber composite sleeper without the need for long-term experimentation, the ambient temperature present in the metrological stations can 

be relied upon to provide a highly accurate prediction of sleeper deformation. Also, there is a very strong correlation (above 96%) between 

the surface/internal temperature and the ambient temperatures, while a fair correlation (about 60%) exists between the surface/internal 

temperature field and the deformation. 

▪ The maximum positive and negative deformations occurred at 16:30 and 17:30 hrs and 7:30 to 10:30 hrs, respectively. This implies that, 

like most polymer materials, the railway sleepers exhibit significant thermal expansion when heated. This property means that as the 

polymer absorbs heat from sunlight, its volume increases. This expansion can lead to deformation if the increase in volume is constrained 

by adjacent materials or the sleeper's structural design. When the intensity of sunlight decreases, the polymer cools and contracts, 

potentially reversing some of the deformations. 

▪ The K-nearest neighbor algorithm outperformed the response surface method, XGBoost, CatBoost, and random forest algorithms by 

presenting the highest correlation coefficient and lowest error metrics; R2, MSE, RMSE, and MAE values of 0.999, 0.000258, 0.016, and 

0.000896 respectively. However, it is worth noting that all the methods employed to predict the deformation of rubber composite sleepers 

performed very well with a high degree of accuracy (R2 value of greater than 80%). 

▪ Although KNN proved to be the best fit for the prediction of the deformation of rubber composite sleepers, the independent/explanatory 

variables utilized in this study to predict the deformation of rubber composite sleepers are the internal and surface temperatures. It is worth 

noting that since there is a close relationship between the sleeper temperatures and the ambient, then the ambient temperature from 

metrological centres can be utilized as input variables. Also, it is therefore recommended that more variables such as wind speed, humidity, 

solar irradiation etc should be included as explanatory variables for more realistic predictions. 

▪ The prediction models attempted in the study are cardinal in predicting failures or maintenance needs of the rubber composite sleeper in 

service. This enables proactive maintenance schedules, reducing downtime and costs, thus, allowing for timely maintenance interventions 

by railway practitioners. 
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