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Unrestricted calculations of the shell model were conducted to investigate the positive and negative energy levels and 
binding energy for A-odd nuclei 133;135Sn and 133;135Sb by utilizing the effective interactions kh5082, jj56pna, khhe, and 

jj56cdb. The predicted results have been compared with the recently measured data and good global agreements were 

obtained for all interactions except the khhe effective interaction failed to determine the ground state of odd nuclei, it is  
concluded that there is no universally effective interaction in this mass region and more investigation needed to study other 

nuclear structure properties that might help us to better understand the nuclei lies in the vicinity of 132Sn core. 
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1. Introduction 

The nuclei lying around the doubly-magic 132Sn region is a major topic in both theory and experiment right now. New enhanced techniques and 

facilities, such as those that employ radioactive ion beams, enable the collection of new data [1–3], allowing theoretical models to be tested. In 

particular, microscopic methods should be used to investigate or seek for possible development of shell structure as the neutron drip line 

approaches [4,5]. Indeed, the so-called "N=82 shell-quenching" has been suggested to play a role in the creation of the A=130 peak abundance 

of the r-process in a recent paper [6]. The two-body matrix elements (TBME) of the shell-model effective interaction receive special emphasis 

in this context.  C. Radford et al. [7] used the excitation of Coulomb for radioactive beams to measure the values of B (E2) for the initial 2+ 

excited states of neutron-rich 132,134,136Te. The values of B(E2) found for 132,134Te are in great accord with the systematics of heavy stable Te 

isotopes, but the value for 136Te is unexpectedly small. The Holifield Radioactive Ion Beam Facility (HRIBF) has developed neutron-rich 

radioactive beams, which has stimulated experimental and theoretical research in heavy Sn and Te isotopes.  B. A. Brown et al. [8] reported a 

new calculated hell model shell model for magnetic moments for selected 130-132Sn and 132-134Te isotopes. Both realistic CWG [9-12] and 

empirical SMPN (1+2)-body Hamiltonians have been used in large-basis unconstrained shell-model (SM) computations for Sn [10] the two 

theoretical outcomes are vastly different. The CWG realistic interaction predicts the 21
+ for the even-even Sn isotopes above the 132Sn core. The 

realistic interaction CWG predicts almost constant energies of 2+1 states, which are generally predicted for singly magical nuclei.  

The purpose of this paper is to apply the unrestricted large-scale shell model calculation to study the positive and negative energy levels 

including high JP values and binding energy for 133;135Sn, 133;135Sb isotopes near the 132Sn doubly-magic core. The calculation will be performed 

for selected isotopes using the nuclear shell model code NushellX@MSU utilizing the model space j j56pn, by employing the effective 

interactions j j56pna, j j56pnb, kh5082, cw5082, jj56cdb, and khhe. The results of the calculations of the level schemes’ reduced transition 

probabilities and binding energy will be compared with the recently available measured data. 
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Nomenclature & Symbols  

Sn Tin is a chemical element with the symbol Sn (from Latin: Stannum)  TBME Two-Body Matrix Elements 

HRIBF Holifield Radioactive Ion Beam Facility SM shell-model 

Sb Antimony is a chemical element with the symbol Sb (from Latin: Stibium)  JP Total angular momentum with parity (P) 

CWG Chung-Wildenthal G Matrix SMPN Shell Model Proton Neutron 

2. Shell Model Calculations 

The calculations were conducted in the jj56pn model space for isotopes 133;135Sn and 133;135Sb near the doubly magic core 132Sn by using the 

windows-based recent code NushellX@MSU without imposing any restriction to the model space by utilizing the effective interactions jj56pna, 

kh5082, jj56cdb, and khhe. The calculations of excited level spectra and the binding energy from the present study were compared with the 

recent available experimental data and a conclusion had been drawn from the present study.  

In the nuclear shell model, the center mean-field potential is created by the individual nucleons.  

In the case of many-body issue, such as in nuclear physics. To write the Hamiltonian as the sum of the components for the individual particles 

in the nucleus, start with the precise of independent particle motion [11], 

           𝐻(0) = ∑ [𝑇𝑖 + U (ri)] 𝐴
𝑖=1                                                                                                                                                                 (1) 

In which H(0) denotes the Hamiltonian unperturbed system and U (ri) and Ti are the potential and kinetic energies, respectively. The Slater-

type eigenfunctions are the solution to eq.(1), that obeys the principle of Pauli exclusion that wavefunctions for identical particles must be 

antisymmetric, therefore eigenfunctions for the two-particle system can be written as [11],  

 ϕα1,α2 =
1

 √2i
|
φα1(1) φα1(2)

φα2(1) φα2(2)
| =

1

√2i
[φα1(1) φα2(2)  − φα1(2) φα2(1)]                                                                                                                              (2) 

where φα1(1) is the product of radial and angular components for single-particle wavefunctions. Clebsch-Gordon coefficients, spherical 

harmonics, and the radial component are all included in this somewhat complicated equation. The radial portion of the expression, 𝑅𝑛𝑙(𝑟), is 

the only part that isn't clearly specified (r). The shape of the eq's potential U(r) determines the features of eq. (1). It turns out that selecting this 

possibility isn't as simple as it appears. The Harmonic Oscillator (HO) is the most commonly used potential because the wavefunctions are 

integrable. The Woods-Saxon (WS) provides a more realistic potential but the problem cannot be solved only numerically [11],  

             𝑈(𝑟) =
1

2
𝑚𝜔2𝑟2     (Harmonic Oscillator)                                                                                                                                 (3) 

where m is the mass of the nucleon, 𝜔  is the oscillator's frequency, and r denotes the parameter of the radius [11], 

              U(r) =
𝑈0

1+exp( 
r−R0

a
 )  

 (Woods - Saxon)                                                                                                                                                (4) 

where U0 is the depth of the potential, a is the parameter of the diffuseness and R0=r0A1/3. The shell gaps found in nuclear data are not 

reproduced by inserting any of these equations into the Schrödinger equation. To adequately account for these "magic numbers," a substantial 

spin-orbit component must be introduced. The magnetic field generated by this apparent motion interacts with the nucleon's magnetic moment. 

The dot product ℓ⃗ . 𝑆  of the two gives the energy of interaction between a magnetic moment and a magnetic field. The spin-orbit interaction 

energy must be proportional to the dot product [12], 

               𝑈𝑠𝑜 = 𝑓(𝑟)ℓ⃗ . 𝑆                                                                                                                                                                                 (5) 

Thus, the function 𝑓(𝑟) is connected to the central potential and contains the reliance on the radial coordinate r. The anticipated value f (r)n,l is 

predicted to be in the order of ℏω0 ~41A−1/3 MeV based on experimental data [11,13]. The wavefunctions normalized and antisymmetrized for 

the system of “identical fermions” were obtained using the Slater determinant of eq. (2). Because the nucleus includes both neutrons and protons, 

the nucleus interacts with each other. In their current state, these wave functions can't be employed. Instead, an isospin new quantum number 

T is introduced to help distinguish between neutrons and protons. The core is then considered as an inert system, the valence nucleons, on the 

other hand, are dealt with independently [11],  

             Φ𝐽,𝜏 ∼ Φ0,𝜏
𝑐𝑜𝑟𝑒 × Φ𝐽,𝜏(𝛼1, 𝛼2, …… )                                                                                                                                                 (6) 

The concept of independent-particle motion is impractical in this case, because the circling particles must undoubtedly interact with one another. 

As a result, an A-particle system's independent-particle Hamiltonian may be expressed in terms of two-particle interactions as [11],  

              𝐻 = ∑ 𝑇𝑘 + ∑ ∑ W (r k , r ℓ )𝑛
 ℓ=𝑘+1

𝐴
𝑘=ℓ

𝐴
𝑘=1 ,                                                                                                                                 (7) 

where W (r k , r ℓ ) is the interaction between two-bodies for the kth and ℓth nucleons. Taking an average potential U (rk), the Hamiltonian reads,  

𝐻 = ∑ [𝑇𝑘 + U (rk)] + ∑ ∑ W (r ⃗⃗ k , r ⃗⃗ ℓ ) − ∑ 𝑈(𝑟𝑘)
A
k=1 ,𝑛

 ℓ=𝑘+1
𝐴
𝑘=ℓ

𝐴
𝑘=1                                                                                                                   (8) 

The first term in the above equation is the same as the Hamiltonian for independent-particle provided by eq. (1), and the second and third terms 

account for the residual interaction, which is the divergence from independent particle motion. Equation (1) may be recast by separating the 

summations into core and valence contributions [11],   
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" 𝐻 = 𝐻𝑐𝑜𝑟𝑒 + 𝐻1 + 𝐻2 + V (r 1 , r 2 )"                                                                                                                                                                (9) 

Here, 𝐻𝑐𝑜𝑟𝑒 include all the interacting nucleons comprising the core, 𝐻1 and 𝐻2 are the contributions comes from the single particles 1 and 2, 

and “V (r 1 , r 2 ) “ which include the interactions between particles 1 and 2, in addition to any interactions with core nucleons. The energy is 

expressed similarly when this form of the Hamiltonian is used in the Schrodinger equation [11], 

               𝐸 = 𝐸𝑐𝑜𝑟𝑒 + 𝐸1 + 𝐸2 + ⟨Φ𝐽,𝜏|V(r 1 , r 2 )|Φ𝐽,𝜏⟩                                                                                                                                (10) 

𝐸𝑐𝑜𝑟𝑒 core is the core binding energy, E1 and E2 are the energies of the single particle of orbitals of the core, and “ ⟨Φ𝐽,𝜏|V(r 1 , r 2 )|Φ𝐽,𝜏⟩” is the 

“residual interaction” in the preceding equation. Linear combinations of the unperturbed wavefunction generate the mixed eigenstates [11],  

               (Ψ𝐽,𝜏)𝑝 = ∑ 𝑎𝑘𝑝(ΦJ, 𝜏)𝑘
 

g
𝑘=1  ,                                                                                                                                                               (11) 

where the configurations number is g and the label p=1, 2, ..., g. 

The 𝑎𝑘𝑝 coefficients should obey the condition,  

                 ∑ |𝑎𝑘𝑝|
2
= 1 

g
𝑘=1                                                                                                                                                                                (12) 

Substituting eq. (11) into the equation of Schrodinger leads to,  

                𝐻(Ψ𝐽,𝜏)𝑝 = 𝐸𝑝(Ψ𝐽,𝜏)𝑝,                                                                                                                                                               (13) 

which gives the system’s “linear equations” of the form [11] 

             (

H11 𝐻12 ⋯ 𝐻1g

𝐻21 𝐻22 ⋯ 𝐻2g

⋮ ⋮ ⋱ ⋮
𝐻g1 𝐻g2 ⋯ 𝐻gg

)(

𝑎1𝑝 

𝑎2𝑝 

⋮
𝑎g𝑝 

) = 𝐸𝑝 (

𝑎1𝑝 

𝑎2𝑝 

⋮
𝑎g𝑝 

)                                                                                                                                               (14) 

For particles l and k, the summing of all single-particle and residual interaction terms yields 𝐻ℓ,𝑘. Equation (14) is a standard eigenvalue issue 

that is addressed by setting the determinant to zero [11] , 

              ||

𝐻11 − 𝐸𝑝 𝐻12

 

𝐻21

⋮
𝐻g1

 

𝐻22 − 𝐸𝑝

⋮
𝐻g2

  

 ⋯  𝐻1g

 

⋯
⋱
⋯

 𝐻2g

 ⋮
 𝐻gg − 𝐸𝑝

 || = 0                                                                                                                               (15) 

                                                                                       b 

The result of the g-order polynomial in Ep with g solutions of perturbed energies belongs to each mixed state. Each state has its own coefficients 

𝑎𝑘𝑝, which must be found in order to acquire the wavefunctions Ψ𝐽,𝜏, therefore eq.(14) must be solved for each of the g solutions to Ep in order 

to obtain the coefficients 𝑎𝑘𝑝 and hence the perturbed wave functions Ψ𝐽,𝜏 [14]. 

3. Results and Discussion  

3.1. Energy Levels 

The calculations were conducted by considering the core at 132Sn for all the investigated nuclei, by utilizing the jj56pn model space, by 

employing the effective interactions j j56pna, j j56pnb, kh5082, cw5082, and khhe.  

Fig. 1-4 displays the comparison we had made between our theoretical predictions for the energy level for 133;135Sn and 133;135Sb isotopes by 

utilizing the effective interactions kh5082, jj56pna, khhe, and jj56cdb and compare the predicted results with the measured data.  

Fig. 1 shows a comparison of our estimates for the positive and negative parity states of the 133Sn isotope using the effective interactions stated 

earlier. The ground-state 7/2- is accurately reproduced by three effective interactions.   

The three effective interactions agree reasonably well with their corresponding measured data in our theoretical calculations, with the exception 

of the khhe effective interaction, which failed to determine the ground state of 133Sn. Fig. 2 depicts the predicted excitation energies for the 
135Sn isotope positive and negative states. Except for the khhe effective interaction, which failed to determine the ground state of 133Sn which 

is (7/2-). Many previously unconfirmed experimental data values have been validated by our theoretical calculations. All effective interactions 

are included in the computations, and the results are reasonable. The low low-lying energy level was calculated using the same effective 

interactions by assuming the core at 132Sn, as shown in Figs. 3, 4 for the 133,135Sb isotopes, respectively. Effective interactions appropriately 

reproduce the ground state for their isotopes. Many uncertain energy levels from the values of the measured have been confirmed in our 

theoretical. The estimates based on three effective interactions agreed rather well with the experimental findings. Except for the khhe effective 

interaction, which was unable to determine the ground state of 133,135Sb. 
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Fig 1. Depicted the comparison of measured and [16] calculated yrast levels for 133Sn isotopes using j j56pna, j j56pnb, kh5082, cw5082, and 

khhe interactions 

 

Fig 2. Depicted the comparison of measured [16] and calculated yrast levels for 135Sn isotopes using kh5082, jj56pna, khhe, and jj56cdb 

interactions 
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Fig 3. Depicted the comparison of measured [16] and calculated yrast levels for 133Sb isotopes using kh5082, jj56pna, khhe, and jj56cdb 

interactions 

 

Fig 4. Depicted the comparison of measured [16] and calculated yrast levels for 135Sb isotopes using kh5082, jj56pna, khhe, and jj56cdb 

interactions 
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3.2. Energy Levels 

Table 1 shows the comparison between the estimated binding energies for all the isotopes investigated in the study by utilizing the four effective 

interactions indicated previously with their corresponding experimental binding energies [17]. The effective interactions employed in this work 

can correctly predict the binding energies of all isotopes under examination. 

Table 1 compares the estimated binding energy in units of (MeV) for each effective interaction with experimental data from [17] 

Kh5082 Kh5082 jj56cdb Jj56pna Exp.  Isotopes  

153.619 151.251 151.129 151.446 134.468 133Sn 

289.119 185.197  185.256 185.228 168.570 135Sn 

367.619 214.723 214.753 214.709 198.257 133Sb 

315.119 233.140 233.117 233.155 216.681 135Sb 

4. Conclusion 

Unrestricted large-scale shell model calculations were conducted in this work to investigate the energy levels and binding energies of A-odd 

nuclei 133;135Sn and 133;135Sb using the effective interactions kh5082, jj56pna, khhe, and jj56cdb. The calculated results were compared to the 

most recent experimental data, and good global agreements were obtained for all interactions except the khhe effective interaction, which failed 

to determine the ground state of odd nuclei, leading to the conclusion that there is no universal effective interaction in this mass region. 
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