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The safety of children is one of the fundamental concerns of parents. Recently, child kidnapping has increased by a large 

percentage, some children have been found, and some children have not found yet. This paper proposes an indoor 

localization system based on ZigBee wireless sensor network (WSN) and Backpropagation Artificial Neural Network (BP-
ANN) to locate the child in an indoor environment. Several ANN topologies were investigated to select the best one with 

minimum tracking or localization error. The Received Signal Strength Indicator (RSSI) was collected from four ZigBee 

XBee S2C anchor nodes by the mobile node carried by the child in an indoor area of 32m × 32m. The RSSI was collected 
from 127 test points inside the tested area. The measured RSSI was used to train, test, and validate the performance of BP-

ANN to determine the two dimensions (2D) of the target child’s location. Different topologies of ANN have been examined 

for training, testing, and validation which are 5-5, 10-10, 15-15, and 20-20 neurons in the hidden layer. The findings 
indicate that the 20-20 ANN topology can achieve higher accuracy than other topologies. Additionally, 20-20 topology 

localization errors were 1.0, 1.157, and 1.356 m for training, testing, and validating ANN performance. 
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1. Introduction 

Many children are reported missing from their parents, especially in public areas. In the USA, 800,000 children are missing from their parents 

yearly [1]. Tracking systems can be developed for outdoor and indoor environments. Indoor tracking technologies attract the interest of many 

researchers because they are used in many applications for tracking and monitoring children [2, 3]. The design and implementation of a tracking 

system for determining the location and getting a coordinated location in an indoor environment is the main challenge because of the harsh 

nature of the indoor wireless channel, such as object reflection, diffraction, and scattering can cause signal with multipath, in addition, to signal 

interference with noise. So, the radio signal can suffer high attenuation when the elements are located in different rooms, and it will be Non-

Line of Sight (NLoS) with the tracked child [4]. Finally, indoor tracking systems deployment scenarios can change, so using an accurate model 

to characterize multipath and attenuation effects is impossible [5, 6]. On the other hand, some techniques are mainly designed to supplement 

satellite navigation technologies like the Global Positioning System (GPS), which has outdoor tracking accuracies of 1–10 m [7]. However, 

they cannot track people indoors for several reasons. First, people inside buildings are NLoS with the satellite constellation, whereas GPS 

requires a Line of Sight (LOS) connection to determine their positions [8]. Second, the weather situations like cloudy or rainy weather directly 

impact the tracking process for outside tracking, making indoor tracking impossible. Third, the GPS is a high cost to use in indoor tracking. 

Finally, there is no GPS signal inside the high buildings. Range-free and range-based systems are localization algorithms . [9]  Range-free 

localization algorithms estimate node positions using a communication link between mobile nodes and beacon nodes in the network. However, 

they do not offer information regarding angle or distance [10, 11]. Furthermore, it is directly related to the quality of RSSI, which changes over 

time due to environmental variables such as channel reflection, fading, scattering, refraction, diffraction, multipath, and so on [12]. This 

approach is less accurate than a range-based method. On the other hand, range-based techniques are more precise and effective than range-free 

localization methods [13]. The angles and distances between nodes in  Wireless Sensor Network (WSN) are calculated using Time of Arrival 

(ToA) range-based algorithms [14], Angle of Arrival (AoA) [15], Time Difference of Arrival (TDoA) [16], acoustic energy [17], and RSSI 

[18]. All receiving nodes that detect the target signal's location must be synchronized using the TDoA and ToA procedures. TDoA has a low 

localization error but uses much power and requires additional hardware. The precision of the antenna direction is essential to the AoA approach; 

adding an extra antenna array increases the cost and adds more hardware. However, while GPS is the most straightforward approach and is 

commonly used in outdoor localization, a reliable location based on GPS is not achievable in an inside setting due to the barrier between the 

GPS device and the satellite. Furthermore, GPS uses more energy than other systems. Acoustic energy faces some limitations (for example, 

bandwidth constraints that limit the amount of data transmitted in the network and limited node processing capability) that prevent it from 

performing complex and sophisticated processes; additionally, the audio in the network is not synchronized because each node operates 

independently. Because it does not require extra hardware, time synchronization, or an antenna array, the RSSI approach is cost-effective and  
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Nomenclature & Symbols   

WSN Wireless Sensor Network BP-ANN Backpropagation Artificial Neural Network 

RSSI Received Signal Strength Indicator NLoS Non-Line of Sight 

GPS Global Positioning System LOS Line of Sight 

ToA Time of Arrival AoA Angle of Arrival 

TDoA Time Difference of Arrival WiFi Wireless Fidelity 

RFID Radio Frequency Identification RSS Received Signal Strength 

MLE Maximum Likelihood Estimator BLE Bluetooth Low Energy 

IoT Internet of Things AP Access Point 

LMS Least Mean Square RF Radio Frequency 

DNN Deep Neural Networks SMS Short Message Services 

GSM Global System for Mobiles KNN-AVG K-Nearest Neighbor Average 

BPNN Backpropagation Neural Network WKNN Weighted k-Closest Neighbor Technique 

PSO-KF Particle Swarm Optimization- Kalman Filter KF Kalman Filter 

BA Bat Algorithm RBF Radial Basis Functions 

PTS Personal Tracking System CSI Channel State Information 

SVM Support Vector Machines CNN Convolutional Neural Network 

LSTM Long-Short Term Memory EETC Electrical Engineering Technical College 

    

 minimizes power consumption. It also has a lower system complexity. While RSSI can be used to locate children and people in an indoor 

setting, this method has low localization accuracy due to the causes mentioned above. As a result, combining RSSI with a specific error 

minimization approach can reduce the localization error. Although ZigBee is mainly restricted to industrial and WSN, components depending 

on this technique consume substantially less energy than Wireless Fidelity (WiFi), Radio Frequency Identification (RFID), and Bluetooth [19]. 

Some indoor tracking systems based on Received Signal Strength (RSS), such as Maximum Likelihood Estimator (MLE)[20], Eco-tracking 

[21], and Mote Track [22], have been effectively evaluated and used for tracking people. Generally, the implementation and design of indoor 

tracking systems are limited to the main situations: 1) indoor scenario scalability, 2) constraints for the tracking people, and 3) the desired 

accuracy specification. The accuracy can be determined mainly by the density of nodes in the indoor tracking system. Therefore, if minimal 

accuracy is desired, the user can determine a minimum number of nodes. This paper proposes an indoor tracking system based on RSSI 

measurements of Zigbee technology to determine children’s location, and the localization accuracy was improved using BP-ANN.  

The contributions of this work are summarized as follows. 

1. A prototype for children tacking was designed and practically implemented based on ZigBee wireless sensor network. 

2. The localization error for children was improved by adopting a neural network in the indoor surrounding. 

3. The proposed children tracking system was validated related to the previous articles regarding the localization error. 

2. Related Work 

In previous works, several techniques have been used for indoor tracking, like RFID [23], WiFi [24], ZigBee  [1], and Bluetooth [25]. On the 

other hand, several algorithms are used to optimize locating accuracy with these techniques. One of these works is [2], where the authors 

proposed a tracking system for children in or out of the school bus. The system had been designed using the Internet of Things (IoT) by 

Bluetooth Low Energy (BLE), which is appropriate for RSSI. From the authors' viewpoint, the system decides if the child is in or out school 

bus by estimating the distance between the Access Point (AP) and the child's position while wearing a smartwatch. The least mean square 

(LMS) algorithm was used to set RSSI parameters to get high accuracy. By applying the system, the authors found that the RSSI inside the 

school bus (−68.2, −83.0 dBm) and RSSI outside the school bus (−40.6, −57.0 dBm). In [6], the author proposed an indoor system for tracking 

and locating movement people using the RSSI of Radio Frequency (RF) signal. They combined hardware with software for tracking a person 

in real-time by using a BLE beacon as a transmitter which the tracked person will carry, and Raspberry Pi and Bluetooth as receivers at a fixed 

point in the environment with the hardware to collect four databases. The software uses four models based on Deep Neural Networks (DNN) 

to analyze the four databases RSSI and determine a person’s location. The average accuracy is 90.92% for the 0.5 m threshold. They can 

determine the main factors’ effect on localization accuracy in cluttered environments: numbers and layout of RF receivers, location density of 

receiving RSSI, and person direction that carries the transmitter. In [26], the authors proposed location determination and fall detection for the 

elderly who live alone using WiFi and GPS. The proposed system is wearable hardware connected to WiFi and an accelerometer sensor to 

detect falls. In case of emergency, the WiFi module of the wearable device sends Short Message Services (SMS) by Global System for Mobiles 

(GSM) or an email. In the case of fall detection, the GPS coordinates the location from a Google map if there is no fall detection. While the 

authors in[27]  design an indoor positioning system with Wireless sensor networks based on Zigbee, the proposed system consists of Zigbee 

sensor nodes which are used to measure RSSI values and send them to the database for processing. After that, the positioning accuracy by K-

nearest neighbor average (KNN-AVG) was compared with the Backpropagation Neural Network (BPNN) and weighted k-closest neighbor 

technique (WKNN). The results show that the positioning accuracy by BPNN is higher than those achieved by the WKNN and KNN-AVG. 

The authors in [28] proposed Particle Swarm Optimization- Kalman Filter (PSO-KF) indoor fingerprint localization system. They used the PSO 

algorithm to select the optimum position of APs, enhance the system's accuracy, and analyze the position and number of APs on the performance 

of fingerprint localization. They used Kalman Filter (KF) to update the estimated location by PSO to track the user's mobile phone. The results 

of this work show that their proposed system improves performance in real-time and decreases computational, in addition to achieving high 

accuracy for tracking and localization with an estimated error equal to 1.5m. A fingerprint localization system based on Bluetooth RSS is 

designed by the authors in [29] using a Bat Algorithm (BA) to determine the location and improve the real-time localization accuracy. KF is 

used to reduce estimation error and update position, which is initially determined using the BA. The authors compare their tracking model's 

computational time and localization accuracy with other tracking models based on several algorithms such as PSO, WKNN, clustered Radial 

Basis Functions (RBF), and kernel. The experimental results show higher localization accuracy in real-time with lower computation complexity 

and error than other tracking models. Their tracing model obtained an accuracy equal to 89.50%. A personal Tracking System (PTS) is proposed 
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in [30] by combining GPS and GSM for tracking and detecting a person's location in real-time. The hybrid system of Arduino, GSM Modem, 

and GPS receiver at the patient model and LCD, a smartphone with GSM module at the caretaker model. The GPS determines the patient's 

location and sends it by SMS using GSM to the caretaker, who uses Google Maps to know the location. They found that because of a bad 

connection, there are some locations GSM cannot determine, and the SMS may be a loss. Also, it has not been tracked accurately as GPS. 

Another indoor tracking system is proposed in [31] based on WiFi for tracking humans in indoor environments known as WI Locus. This 

system used the existing WiFi APs in the indoor environment to detect the direction of walking humans. These APs sense the changes in the 

Channel State Information (CSI) of RF signal, and then the multi-class Support Vector Machines (SVM) will classify moving behavior and 

tracking determination. The experimental results in three scenarios show that the show system achieves 95% accuracy for identifying moving 

behavior and 90%accuracy for determining the path. The authors in [32] combined Convolutional Neural Network (CNN) and Long-Short 

Term Memory (LSTM) algorithms for fingerprinting localization. They measured CSI propagate from a single access point of WiFi in an indoor 

environment. The proposed algorithm estimates testing points that are not identical to the reference points. They analyzed the instability of CSI 

and demonstrated a mitigation solution using a comprehensive filter and normalization scheme. The authors practically investigated localization 

accuracy in the environment on hundreds of test points. The proposed system achieved an average localization error of 2.5 m. However, 80% 

of localization errors were under 4 m. In [33], the authors presented two-stages deep learning methods to improve accurate localization in indoor 

environments. Using actual data measurements to characterize the environment based on RF signatures. The CNN was employed in both stages 

to determine the type of indoor environment and to perform effective localization. The proposed method is tested in both stages using four 

scenarios: a lab, lobby, sports hall, and a narrow corridor. They observed that the suggested CNN localization model considerably improves 

localization accuracy to 51.3%. The results of the proposed two stages disclosed that the localization accuracy arrive to 31.8% compared to 

benchmark methods. In [34], an accurate magnetic indoor localization using the DNN algorithm is suggested in indoor localization. The 

localization was performed for a two-dimensional (2D) environment. The magnetic sequences are given features, and the DNN is utilized to 

identify the sequences based on patterns produced by surrounding magnetic features. The locations were determined in a corridor and atrium 

based on identified features.  The results revealed that the localization error was 1 and 2.3 m for the corridor and atrium, respectively. The 

results indicate that magnetic positioning is possible using just a smartphone's sensors. As mentioned above, localization accuracy is one of the 

limitations that constrain indoor localization. The localization or distance estimation accuracy in most of the studies mentioned above is still 

insufficient because it has high localization errors due to its dependence on RSSI. The RSSI is fluctuated due to indoor environments, which 

leads to high localization error. Therefore, the BP-ANN was proposed to overcome this limitation. Thus, the localization accuracy was improved 

in the current work. Unlike previous works, this paper offers a practical, wearable, low-cost, and less complex child tracking system with higher 

localization accuracy based on applying BP-ANN with different topologies. 

3. System Design 

In this work, a child tracking system has been proposed to track children using Zigbee (XBee S2C). Electrical Engineering Technical College 

(EETC) was adopted as a practical scenario, specifically on the ground floor of the lab building where the target child moved in. The adopted 

indoor environment had 32 m×32 m dimensions, was constructed with concrete walls and included wood and metal doors, which highly affect 

signal propagation. Moreover, the adopted environment consisted of rooms with different dimensions and four corridors indicated as zones, 

each 32 m long. On the other hand, four anchor nodes are installed in these zones, known as  Anchor Nodes (ANs), and they are located in a 

fixed position at the end of each corner in the adopted environment. The coordinators of AN1, AN2, AN3, and AN4 are (0,0), (0,31), (31,31) 

and (31,0), respectively. The fifth anchor node is mobile, known as the Mobile Node (MN), and the tracked child carries it. As shown in Fig. 

1, zone1 includes 32 test points (TP1-TP31), zone2 includes 32 test points (TP32-TP63), zone3 includes test points (TP64-TP95), and finally, 

zone4 includes test points (TP96-TP127). 
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Fig. 1.  Environment layout for children tracking system: RSSI= Received Signal Strength Indicator, BAN=Beacon Anchor Node, MAN= 

Mobile Anchor Node, m= meter 
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4. Experiment Configuration 

In the adopted environment, the MAN is located 55cm high above the ground at the tracked child's waist to collect RSSI from BANs, as shown 

in Fig. 2a. While BANs are located at 1.5m high and have the electric power from their neighbours' labs, as shown in Fig. 2b. MAN is connected 

by USB to the laptop and powered by it. In contrast, in the actual application, the MAN must be powered by a battery when the tracked child 

is carrying it. The RSSI samples collected by MAN are recorded by X-CTU software. XCTU is free multi-platform software that allows 

designers to configure Digi radio frequency (RF) devices using a straightforward graphical interface. The software is compatible with embedded 

tools that make it simple to configure, set up, and evaluate Digi RF devices. This software sets the wireless connection's configuration between 

the MAN and BANs. As mentioned, 127 positions have been determined to collect RSSI in the zone representing the child's movement. 

ZigBee

AC/DC adapterMain AC source
 

(a)                                                               (b) 

Fig. 2. The hardware of the proposed system in the indoor environment: (a) BANs and (b) MAN. BAN= Beacon Anchor Nodes, MAN= 

Anchor Nodes Mobile, AC=Alternating current, DC=Direct current 

5. Data Collection 

In the adopted environment, 127 TNs have been determined to collect RSSI in the zones representing the child's movement in these zones. The 

separation distance between two positions is 1m. In each position, (120) RSSI samples are recorded from all BANs and (30) RSSI samples from 

each BAN. So, the total RSSI samples in all positions from all BANs are (3750), which are used for training, testing, and validating ANN’s 

performance. As demonstrated in Fig. 3, RSSI samples are recorded at each TN in the zones when the MAN is moved in the zones. At the AN1, 

the samples from (1-1000) represented by TN1-TN31 in zone1 and the samples from (1001-2749) represented by TN32-TN63 in zone4 have 

an RSSI range from -40 dBm to -80 dBm because these TNs are LOS with AN1. While the rest of the TNs in zone 2 and 3 are NLOS and have 

an RSSI range between (-80- -90). Whereas at the AN2, RSSI range from -40 dBm to -80 received by the samples from (1-2000) represented 

by TN1-TN63 in zone1 and two because of LOS communication with AN2. While the TNs in zone3 and zone4 are NLOS and receive RSSI 

between (-80 to -90).  Finally, AN3 covers the TNs in zone2 and 3, represented by samples from 1000 to 2750 that received RSSI between (-

40 to -75) dBm since they are LOS with AN3. The other TNs in zone1 and zone4 receive RSSI (-75 to -90) dBm because of the NLOS 

communication between them and AN3. Despite some TNs in zone1 being NLOS with AN4, which are represented by samples (1-50), they 

have RSSI between (-60 to -80) dBm because of the small distance between them. The rest of the TNs in zones and all TNs in zone3 and four 

have RSSI less than -80 dBm. The TNs in zone2 receive RSSI between (-40 to -80) dBm.  

 

Fig. 3. BANs coverage in the adopted environment. RSSI= Received Signal Strength Indicator 

6. ANN Algorithm 

Neural networks provide practical computing approaches for information processing, machine learning, and user-generated information to 

estimate combined system output responses. Recently, ANNs have been used with great effectiveness, providing significant results. A biological 

neural network simulates the activity of the biological brain. Connections between neurons link neurons and transport information. Synapses 

can be enhanced during training. The BP training technique is one of several methods used to train an ANN. The calculation, BP of error, and 

a feed-forward input training pattern are all part of BP [35]. An input layer, an output layer, and one or more hidden layers make up the BP-

ANN [36]. These layers are connected in a serial mode, starting with the input layer, continuing via the hidden layers, and finally to the output 
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layer. The connections between layers are known as weights, and each layer contains one or more neurons [37, 38]. The main objective of this 

work's use of BP-ANN was to reduce comprehensive output errors during the learning process. The BP-ANN technique was divided into two 

stages: forward and backward. The Learning Rate (LR) and  ANN topology were two essential criteria in the neural network's structure that 

influenced the proposed system's final performance [39]. The Matlab software (R2015b) was adopted in this study to train, test, and validate 

the ANN.  The BP-ANN was designed and implemented in Matlab to achieve the goal of this research, which represents the enhanced child’s 

location accuracy. The input layer of the BP-ANN structure includes four neurons: RSSI1, RSSI2, RSSI3, and RSSI4. Whereas two hidden 

layers in the structure with different topologies, these topologies have validated the number of neurons between 5 to 20 neurons. Finally, the 

output layer includes two neurons’ location coordinators (X and Y), the tracked child’s location in the adopted environment, as demonstrated 

in Fig. 4. The ANN flowchart can be seen in Fig. 5. It must initialize the parameters of ANN in terms of LR, number of hidden layers, and the 

number of neurons in each hidden layer before stating ANN training, testing, and validating processes. Two hidden layers are selected with a 

validated number of neurons in each hidden layer, whereas the LR has been selected between 0.1–1 with a step of 0.01 to get the minimum 

number of Mean Square Error (MSE) of ANN. After that, the ANN was run to calculate the Mean Absolute Error (MAE) of X and Y locations. 

The ANN run for 1000 iteration to get the optimum value of MAE, MSE, and Root Mean Square Error (RMSE). The best value of MSE was 

determined at 5 m. Also, whenever MSE is achieved 10-2 m which is considered the goal value in this work, the running of ANN will stop.  Fig. 

6 describes how MAE can change according to the changes in LR values. However, when MAE reaches the maximum value, the LR will equal 

1.58m, while the MAE achieves the minimum value when the LR is 1m. The parameters of the proposed ANN model will be listed in Table 1. 
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Fig. 4. ANN structure, RSSI= Received Signal Strength Indicator., HL=Hidden Layer 
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Fig. 5. ANN flow chart for the proposed system, LR=Learning Rate, ANN=Artificial Neural Network, MAE=Mean Absolute Error, MSE= 

Mean square Error, RMSE= Root Mean square Error.t= iteration number 
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Fig. 6.  LR VS MAE 

Table 1. The hyperparameters of ANN 

Parameters Value Type Description 

Network type --------- 
Feed-forward backpropagation 

 
--------- 

Input to ANN 4 
RSSI 1, RSSI 2, 

RSSI 3, and RSSI 4 

Obtained from BAN1, BAN2, BAN3, and 

BAN4 

Hidden layers 2 --------- Transfer function: Tan-Sigmoid 

Output of ANN 2 x- and y- locations Transfer function: Linear 

Neurons in hidden layers 

(5-5), (10-10), (15-

15) and 

(20-20) 

--------- Trial and error 

Learning rate (LR) 0.82 Obtained from loop Range:  0.01 to 1 

Epoch 1000 --------- --------- 

Target error (goal) 0.01  --------- 

Total collected RSSI samples 15,000 3,750  from each anchor node --------- 

Error evaluation Three MAE, MSE, and RMSE --------- 

Data sets Three Training, testing, and validation 

• 2,626 samples (training) 

• 562 samples (testing) 

• 562 samples (validation) 

7. Results and Discussion 

7.1. ANN performance 

The 3,750 RSSI samples collected by MAN are used in three phases: training, testing, and validating the performance of ANN and determining 

the 2D location of the targeted child in the adopted environment. These samples are divided into 70% for training the ANN, which is 2,626. At 

the same time, 15% of the samples are used for each testing and validation, which are 562 samples for both. Also, the MSE of different 

topologies of BP-ANN that are 5-5, 10-10, 15-15, and 20-20 neurons in the hidden layers have been investigated at each phase to evaluate BP-

ANN’s performance. The 20-20 ANN topology has better MSE than other topologies. Hence, the results of evaluation methods like correlation 

coefficient, histogram error, Cumulative Distribution Function (CDF), and Probability Density Function (PDF) for this topology will be 

discussed in all phases. 

The MSE of the BP-ANN's activation function during the training phase was investigated when 1,000 iterations were used. The MSE was 

7.411m for the 5-5 neurons after 891 iterations, 5.548m after 995 iterations for the 10-10 neurons, and 4.361m after 940 iterations for the 15-

15 neurons. Finally, 3.032m for the 20-20 neurons has the best performance, can achieve less MSE after 941 iterations, and reaches the best 

MSE after 200 iterations, as shown in Fig. 7.  

 

Fig. 7.  The MSE at all hidden layers 
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As a result, only the 20-20 neurons were tested and validated using the MSE for ANN performance testing and validation. After 997 iterations, 

the MSE reached a testing value of 3.764 m. In addition, Fig. 8 illustrates that after 200 rounds, the optimum value was attained 8a. Fig. 8b 

shows that the validation phase's MSE was 4.324m, attained after 979 iterations. Results indicate that the MSE achieved at testing and validation 

ANN performance for 20-20 neurons is not as effective as the MSE achieved at training ANN performance after 1,000 iterations.  

It is also possible to assess ANNs' performance by comparing the correlation coefficients between measured locations of the targeted child and 

predicted locations by ANN at various topologies. 20-20 topologies have the best correlation coefficient among different topologies, with 

reduced training testing and validation errors. According to Fig. 9, the training, testing, and validation ANNs at 20-20 neurons have correlation 

coefficients of 0.99055, 0.98850, and 0.98130, respectively. As a result, the correlation coefficient in the testing and validation phases is not as 

high as in the training phase. These results indicated that the proposed ANN topology effectively achieves high localization accuracy and 

decreases errors in localization between measured and predicted locations. 

  
(a) (b) 

Fig.  8.  The MSE of ANN performance of 202-20 neurons for (a) testing and (b) validation 

   
(a) (b) (c) 

Fig. 9.  The correlation coefficient of the ANN for 20-20 neurons (a) training, (b) testing, and (c) validation 

7.2. Error estimation 

Fig. 10 shows the histogram error for evaluating ANN training, testing, and validation.  Most RSSI sample values for 20-20 neurons fall within 

-8 to 8. There are 335 samples at a minimum error of 0.219m for training, 129 samples at a minimum error of 0.01, and 113 samples for 

validation at a minimum error of 0.125m.  Consequently, a histogram plot shows that the 20-20 ANN topology reduces training errors more 

than testing and validation errors. 

   
(a) (b) (c) 

Fig. 10. The histogram of error of the ANN for 20-20 neurons (a) training, (b) testing, and (c) validation 
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CDF can also be used to check the ANN's performance, as seen in Fig. 11. When CDF reaches 90% at 20-20 neurons, the CDF plot shows that 

training, testing, and validation errors are less than 1.9583m and less than 2.3139m. In contrast, when comparing the training and testing ANNs 

with their validation, the training ANN will come out on top since it has the lowest localization error when CDF exceeds 90%. 

 

Fig. 11. The CDF of the error for training ANN for 20-20 neurons 

PDF is a practical assessment method that can evaluate ANN performance. As a result, the three phases of the PDF curve are used to estimate 

the localization error. Hence. Fig. 12 demonstrates that the PDF is distributed at training error between (-2 and 2), the testing error between (-3 

and 3), and the validation error extending between -3 and 3 based on the PDF curve. Additionally, training testing and validation errors 

converge to 0 when the PDF is 50%, 36%, and 33%, respectively. 

 

Fig. 12. PDF of the error of the training ANN for 20-20 neurons 

A 3D representation of the correlation between the ANN errors as z-axis and X and Y coordination in the real environment at 20-20 neurons is 

provided in Fig. 13. Training, testing, and validation errors peak at 6.5m, 8.4m, and 6m, respectively. It also illustrates that the smooth 

progression from black to yellow indicates a gradient error; the black represents a minimal error, whereas the yellow indicates a maximum 

error. 

MAE,  MSE, and RMSE at the training, testing, and validation of ANN for 20-20 neurons have been calculated and listed in Table 2. Validation 

performance has the maximum MAE, MSE, and RMSE, whereas training performance has the minimum MAE, MSE, and RMSE. As a result, 

the validation error is less than all the training and testing. 

   

(a) (b) (c) 

Fig. 13. The error of x-and y-locations for training ANN for 20-20 neurons 
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Table 2. MAE, MSE, RMSE for 20-20 ANN topology at the three phases 

Error (m) Tri. Tes. Val. 

MAE 1.0 1.157 1.356 

MSE 3.363 4.280 4.940 

RMSE 1.833 2.068 2.222 

8. Comparison with Previous Works 

The localization error of the proposed system by BP-ANN has been compared with the localization error in some of the previous works to prove 

the authenticity of the proposed system to track children in an indoor environment. In Table 3, the used method and the wireless technique for 

each work have been introduced. Where RFID, Zigbee, Bluetooth, BLE, WSN, and WiFi are used in the mentioned works. On the other hand, 

Non-Linear Regression Neural Network (NL-NN), Neural Fuzzy Inference System (ANFIS), Bayesian Graphical Model (BGM), MLE-PSO, 

Genetic Algorithm (GA), K-Nearest Neighbors (KNN), Feature-Scaling-KNN (FS-KNN), Multilayer Perceptron Neural Networks (MLPNN), 

Radial Basis Function Neural Networks (RBFNN) ), Parametric Loop Division (PLD), Intelligent Water Drops-Continuous Optimization (IWD-

CO), CNN-LSTM, Back Propagation Neural Network- Adaptive Genetic Algorithm (BPNN-AGA), ANN, PSO, and PSO-ANN are used to 

optimize localization error in these works as listed in Table 3. All of these works used either RSSI or CSI to determine the location of MAN in 

indoor environments.  Moreover, Table 3 compares the results obtained from the current research based on BP-ANN with previous works. It 

can be observed that the localization error of the adopted BP-ANN based on 20-20 topology is less than the localization error in these works, 

where the errors were 1.0, 1.157, and 1.356 m for training, testing, and validating, respectively.  

Table 3. Comparison between the current method and some previous works 

Ref Year Technique Method Localization Error(m) 

[40] 2015 WIFI NL-NN 4.38 

[41] 2016 ZigBee ANFIS 1.4269 

[42] 2016 WiFi PSO-ANN 2.46 

[43] 2017 WiFi position fingerprint algorithm 2.7 

[44] 2017 WIFI BGM 2.9 

[45] 2017 WSN MLE-PSO 4.83 

[46] 2018 BLE GA 2.34 

[47] 2018 Bluetooth PSO-ANN 2.21 

[48] 2018 RFID ANN 1.78  

[49] 2018 BLE KNN 1.8 

 2018 WiFi FS-KNN 1.72 

[50] 2019 WSN 
MLPNN 

RBFNN 

3.12 

3.46 

[51] 2019 BLE 
Trilateration algorithm nonlinear least squares 

algorithm 
1.149 

[52] 2019 ZigBee PLD 1.91 

[53] 2019 WSN IWDs-CO 1.174 

[54] 2019 ZigBee PSO 3.13 

[55] 2020 WiFi CNN-LSTM 1.0863 

[56] 2020 ZigBee QPSO-GRNN 1. 0143 

[57] 2021 BLE KNN 1.46 

[58] 2021 WiFi BPNN-AGA 4 

[59] 2021 WiFi GA 1.92 

[60] 2021 BLE fusion algorithm 1.76 

[61] 2022 BLE ANN 5.1 

This 

work 
2022 ZigBee BP-ANN 

1.00 (training) 

1.157 (testing) 

1.356 (validation) 

9. Conclusion 

In this study, a backpropagation artificial neural network and ZigBee wireless sensor network-based indoor tracking system were suggested to 

find the child in indoor surroundings. Several topologies were examined to find the optimum ANN topology that provides the least amount of 

tracking or localization error. Four ZigBee XBee S2 anchor nodes were distributed to broadcast RSSIs, where the RSSIs were collected by the 

mobile node carried by the child. The experiments were conducted on the ground floor of the EETC, which has a maximum available area in 

the EETC. The collected RSSI samples were used to train, test, and validate the performance of the ANN. Two hidden layers are used with a 

different number of neurons in the hidden layer, which are 5-5, 10-10, 15-15, and 20-20, to find the MSE, MAE, and RMSE. The conclusions 

can be drawn as follows. 

• The proposed 20-20 ANN topology achieves less MSE than other topologies,  

• The error in the training phase of ANN was minimal compared to the testing and validation phases, and 

• Increasing the number of neurons in hidden layers increases the localization accuracy of the child.  

• In future work, an optimization algorithm can be combined with ANN to achieve higher localization accuracy and less localization error. 

In addition, the CNN can be adopted instead of ANN to improve the localization accuracy further.  
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