Disc Forming by Friction Stir Consolidation of AA2024 Chips

Authors

  • Saeb Nazim Abdul Wahed Engineering Technical College, Middle Technical University, Baghdad, Iraq.
  • Sabah Khammass Hussein Engineering Technical College - Baghdafd, Middle Technical University, Baghdad, Iraq.
  • Moneer H. Al-Saadi Baghdad University, Baghdad, Iraq

DOI:

https://doi.org/10.51173/jt.v4i1.442

Keywords:

Friction Stir Consolidation, AA2024, Chips Recycling, Design of Experiments

Abstract

This work aims to form a disc by recycling AA2024 chips using friction stir consolidation (FSC) technique. Initially, the chips were compacted inside a chamber by an applied pressure of 20.7 MPa. Different chips weights and two process parameters were studied in the FSC process: pre-heating time and plunging depth of the tool. The process was carried out at 1400 RPM. Effect of the process parameters and chips weight on chips quality was analyzed by design of the experiments method. The discs formed with a fully consolidated (FC) volume fraction range of 14.5-22.4%. The plunging depth was the most effective factor on surface finishing and grain size of the discs, while the chips weight was the most effective factor on the FC volume. Increasing the chips weight and plunging depth increased the FC volume. The average grain size of the disks ranged between 6.3 to 11 mm.

Downloads

Download data is not yet available.

References

A. E. Tekkaya, M. Schikorra, D. Becker, D. Biermann, N. Hammer, and K. Pantke, “Hot profile extrusion of AA-6060 aluminum chips,” Journal of Materials Processing Technology, vol. 209, no. 7, pp. 3343–3350, Apr. 2009, doi: 10.1016/j.jmatprotec.2008.07.047.

M. Samuel, “A new technique for recycling aluminium scrap,” Journal of Materials Processing Technology, vol. 135, no. 1, pp. 117–124, Apr. 2003, doi: 10.1016/S0924-0136(02)01133-0.

S. Max, “Method for treating aluminum or aluminum alloy scrap,” US2391752A, Dec. 25, 1945 Accessed: Nov. 29, 2021. [Online]. Available: https://patents.google.com/patent/US2391752A/en

J. Cui and H. J. Roven, “Recycling of automotive aluminum,” Transactions of Nonferrous Metals Society of China, vol. 20, no. 11, pp. 2057–2063, Nov. 2010, doi: 10.1016/S1003-6326(09)60417-9.

W. Tang and A. P. Reynolds, “Production of wire via friction extrusion of aluminum alloy machining chips,” Journal of Materials Processing Technology, vol. 210, no. 15, pp. 2231–2237, Nov. 2010, doi: 10.1016/j.jmatprotec.2010.08.010.

W. Tang and A. P. Reynolds, “Production of wire via friction extrusion of aluminum alloy machining chips,” Journal of Materials Processing Technology, vol. 210, no. 15, pp. 2231–2237, Nov. 2010, doi: 10.1016/j.jmatprotec.2010.08.010.

M. Sharifzadeh, M. ali Ansari, M. Narvan, R. A. Behnagh, A. Araee, and M. K. Besharati givi, “Evaluation of wear and corrosion resistance of pure Mg wire produced by friction stir extrusion,” Transactions of Nonferrous Metals Society of China, vol. 25, no. 6, pp. 1847–1855, Jun. 2015, doi: 10.1016/S1003-6326(15)63791-8.

D. Baffari, A. P. Reynolds, X. Li, and L. Fratini, “Influence of processing parameters and initial temper on Friction Stir Extrusion of 2050 aluminum alloy,” Journal of Manufacturing Processes, vol. 28, pp. 319–325, Aug. 2017, doi: 10.1016/j.jmapro.2017.06.013.

D. Baffari, G. Buffa, D. Campanella, L. Fratini, and A. P. Reynolds, “Process mechanics in Friction Stir Extrusion of magnesium alloys chips through experiments and numerical simulation,” Journal of Manufacturing Processes, vol. 29, pp. 41–49, Oct. 2017, doi: 10.1016/j.jmapro.2017.07.010.

D. Baffari, G. Buffa, D. Campanella, and L. Fratini, “Al-SiC Metal Matrix Composite production through Friction Stir Extrusion of aluminum chips,” Procedia Engineering, vol. 207, pp. 419–424, Jan. 2017, doi: 10.1016/j.proeng.2017.10.798.

D. Baffari, G. Buffa, D. Campanella, and L. Fratini, “Design of continuous Friction Stir Extrusion machines for metal chip recycling: issues and difficulties,” Procedia Manufacturing, vol. 15, pp. 280–286, Jan. 2018, doi: 10.1016/j.promfg.2018.07.220.

M. E. Mehtedi, A. Forcellese, T. Mancia, M. Simoncini, and S. Spigarelli, “A new sustainable direct solid state recycling of AA1090 aluminum alloy chips by means of friction stir back extrusion process,” Procedia CIRP, vol. 79, pp. 638–643, Jan. 2019, doi: 10.1016/j.procir.2019.02.062.

D. Baffari, G. Buffa, G. Ingarao, A. Masnata, and L. Fratini, “Aluminium sheet metal scrap recycling through friction consolidation,” Procedia Manufacturing, vol. 29, pp. 560–566, Jan. 2019, doi: 10.1016/j.promfg.2019.02.134.

X. Li, D. Baffari, and A. P. Reynolds, “Friction stir consolidation of aluminum machining chips,” Int J Adv Manuf Technol, vol. 94, no. 5, pp. 2031–2042, Feb. 2018, doi: 10.1007/s00170-017-1016-4.

D. Baffari, A. P. Reynolds, X. Li, and L. Fratini, “Bonding prediction in friction stir consolidation of aluminum alloys: A preliminary study,” AIP Conference Proceedings, vol. 1960, no. 1, p. 050002, May 2018, doi: 10.1063/1.5034875.

Downloads

Published

2022-03-31

How to Cite

Abdul Wahed, S. N. ., Hussein, S. K., & Al-Saadi, M. H. . (2022). Disc Forming by Friction Stir Consolidation of AA2024 Chips. Journal of Techniques, 4(1), 1–8. https://doi.org/10.51173/jt.v4i1.442

Issue

Section

Engineering

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.