A Comprehensive Review of Multi-Port DC/DC Converters for The Off-Grid System Integration with Renewable Energy Resources

Authors

  • Ruaa M. Al-dalawi Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq.
  • Ayad Al-Dujaili Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq.
  • Daniel A. Pereira Federal University of Lavras (UFLA), Lavras-MG, Brazil

DOI:

https://doi.org/10.51173/jt.v5i2.1227

Keywords:

DC/DC Converter, Multiport Converters, Isolated Converters, Non-Isolated Converters, Photovoltaic

Abstract

Appropriate design of Multi-Port Converter (MPC) topology helps to overcome the difficulties of combining numerous renewable energy sources (RES). In this article, a comprehensive analysis of these MPCs in terms of their topologies, operating principles, various dependability, and overall efficacy is offered. There are two main types of MPCs which are non-isolated and isolated MPCs being coupled in parallel and series configurations to function as multi-input converters. These MPCs can flow the load power in one or both directions for the RES or BESS (battery energy storage system) applications. The non-isolated MPCs are most used in the latest years but they have some limitations such as small voltage gain, and failure in isolation. The isolated MPC is more effective than the non-isolated ones in terms of isolation between the input power stage and output but has some drawbacks such as the high cost, and large size of the high-frequency transformer (HFT). In this review paper, a high-efficiency voltage-regulator/battery energy storage system (VR-BESS) was presented as a multi-port DC-DC converter for the standalone PV (photovoltaic) array. This converter has fewer switches, is cheaper, and is more dependable than its counterparts.

Downloads

Download data is not yet available.

Author Biographies

Ruaa M. Al-dalawi, Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq.

     

Ayad Al-Dujaili, Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq.

    

Daniel A. Pereira, Federal University of Lavras (UFLA), Lavras-MG, Brazil

Department of Automatics

References

Yaqoob, S. J., Saleh, A. L., Motahhir, S., Agyekum, E. B., Nayyar, A., & Qureshi, B. (2021). Comparative study with practical validation of photovoltaic monocrystalline module for single and double diode models. Scientific Reports, 11(1), 19153. https://doi.org/10.1038/s41598-021-98593-6.

PraveenKumar, S., Agyekum, E. B., Velkin, V. I., Yaqoob, S. J., & Adebayo, T. S. (2021). Thermal management of solar photovoltaic module to enhance output performance: An experimental passive cooling approach using discontinuous aluminum heat sink. Int. J. Renew. Energy Res, 11, 1700-1712. https://doi.org/10.20508/ijrer.v11i4.12468.g8323.

Foley, A. M., Leahy, P. G., Marvuglia, A., & McKeogh, E. J. (2012). Current methods and advances in forecasting of wind power generation. Renewable energy, 37(1), 1-8. https://doi.org/10.1016/j.renene.2011.05.033.

Kumar, R., Singh, L., Wahid, Z. A., & Din, M. F. M. (2015). Exoelectrogens in microbial fuel cells toward bioelectricity generation: a review. International Journal of Energy Research, 39(8), 1048-1067. https://doi.org/10.1002/er.3305.

Qazi, A., Hussain, F., Rahim, N. A., Hardaker, G., Alghazzawi, D., Shaban, K., & Haruna, K. (2019). Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions. IEEE access, 7, 63837-63851 http://doi.org/10.1109/access.2019.2906402.

Sinsel, S. R., Riemke, R. L., & Hoffmann, V. H. (2020). Challenges and solution technologies for the integration of variable renewable energy sources—a review. renewable energy, 145, 2271-2285. https://doi.org/10.1016/j.renene.2019.06.147.

Abbas, F. A., Obed, A. A., Qasim, M. A., Yaqoob, S. J., & Ferahtia, S. (2022). An efficient energy-management strategy for a DC microgrid powered by a photovoltaic/fuel cell/battery/supercapacitor. Clean Energy, 6(6), 827-839. https://doi.org/10.1093/ce/zkac063.

Sanjari, M. J., Gooi, H. B., & Nair, N. K. C. (2019). Power generation forecast of hybrid PV–wind system. IEEE Transactions on Sustainable Energy, 11(2), 703-712. https://doi.org/10.1109/TSTE.2019.2903900.

Podder, A. K., Roy, N. K., & Pota, H. R. (2019). MPPT methods for solar PV systems: a critical review based on tracking nature. IET Renewable Power Generation, 13(10), 1615-1632. https://doi.org/10.1049/iet-rpg.2018.5946.

Luo, L., Abdulkareem, S. S., Rezvani, A., Miveh, M. R., Samad, S., Aljojo, N., & Pazhoohesh, M. (2020). Optimal scheduling of a renewable based microgrid considering photovoltaic system and battery energy storage under uncertainty. Journal of Energy Storage, 28, 101306. https://doi.org/10.1016/j.est.2020.101306.

Szcześniak, P., & Kaniewski, J. (2015). Power electronics converters without DC energy storage in the future electrical power network. Electric Power Systems Research, 129, 194-207. https://doi.org/10.1016/j.epsr.2015.08.006.

Tan, N. M. L., Abe, T., & Akagi, H. (2011). Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system. IEEE Transactions on Power Electronics, 27(3), 1237-1248. https://doi.org/10.1109/TPEL.2011.2108317.

Ivanovic, Z., Blanusa, B., & Knezic, M. (2011, October). Power loss model for efficiency improvement of boost converter. In 2011 XXIII International Symposium on Information, Communication and Automation Technologies (pp. 1-6). IEEE. https://doi.org/10.1109/ICAT.2011.6102129.

Mulligan, M. D., Broach, B., & Lee, T. H. (2005). A constant-frequency method for improving light-load efficiency in synchronous buck converters. IEEE Power Electronics Letters, 3(1), 24-29. https://doi.org/10.1109/LPEL.2005.845177.

Zhao, Z., Xu, M., Chen, Q., Lai, J. S., & Cho, Y. (2011). Derivation, analysis, and implementation of a boost–buck converter-based high-efficiency PV inverter. IEEE Transactions on Power Electronics, 27(3), 1304-1313. https://doi.org/10.1109/TPEL.2011.2163805.

Venkatramanan, D., & John, V. (2019). Dynamic modeling and analysis of buck converter based solar PV charge controller for improved MPPT performance. IEEE Transactions on Industry Applications, 55(6), 6234-6246. https://doi.org/10.1109/TIA.2019.2937856.

Taghvaee, M. H., Radzi, M. A. M., Moosavain, S. M., Hizam, H., & Marhaban, M. H. (2013). A current and future study on non-isolated DC–DC converters for photovoltaic applications. Renewable and sustainable energy reviews, 17, 216-227. https://doi.org/10.1109/TIA.2019.2937856.

Pacheco, V. M., Freitas, L. C., Vieira, J. B., Coelho, E. A. A., & Farias, V. J. (2002, March). A DC-DC converter adequate for alternative supply system applications. In APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 02CH37335) (Vol. 2, pp. 1074-1080). IEEE. https://doi.org/10.1109/APEC.2002.989377.

Wang, X., Ke, J., Li, X., Xu, H., Ma, C., & Bai, J. (2020, November). A modular multi-port DC/DC converter for DC grid. In 2020 4th International Conference on HVDC (HVDC) (pp. 939-944). IEEE. https://doi.org/10.3390/en11102711.

Pacheco, V. M., de Freitas, L. C., Vieira, J. B., Pereira, A. A., Coelho, E. A. A., & Farias, V. J. (2005). An online no-break with power factor correction and output voltage stabilization. IEEE transactions on power electronics, 20(5), 1109-1117. https://doi.org/10.1109/TPEL.2005.850948.

Santhosh, T. K., Natarajan, K., & Govindaraju, C. (2015). Synthesis and implementation of a multi-port DC/DC converter for hybrid electric vehicles. Journal of Power Electronics, 15(5), 1178-1189. https://doi.org/10.6113/JPE.2015.15.5.1178.

Shekhar, A., Mouli, G. C. R., Bandyopadhyay, S., & Bauer, P. (2021, April). Electric vehicle charging with multi-port converter-based integration in DC trolley-bus network. In 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC) (pp. 250-255). IEEE. https://doi.org/10.1109/PEMC48073.2021.9432590.

Dhananjaya, M., & Pattnaik, S. (2021). Review on Multi-Port DC–DC Converters. IETE Technical Review, 1-14 https://doi.org/10.1080/02564602.2021.1882343.

Jaga, O. P., Gupta, R., Jena, B., & GhatakChoudhuri, S. (2022). Bi-directional DC/DC Converters Used in Interfacing ESSs for RESs and EVs: A Review. IETE Technical Review, 1-37 https://doi.org/10.1080/02564602.2022.2116362.

Chen, Y. M., Liu, Y. C., & Lin, S. H. (2006). Double-input PWM DC/DC converter for high-/low-voltage sources. IEEE Transactions on Industrial Electronics, 53(5), 1538-1545. https://doi.org/10.1109/TIE.2006.882001.

Li, G., Shi, J., & Yu, S. (2017, May). Dual-input DC/DC converter for photovoltaic system with reverse charging. In 2017 29th Chinese Control and Decision Conference (CCDC) (pp. 538-543). IEEE. https://doi.org/10.1109/CCDC.2017.7978152.

Varesi, K., Hosseini, S. H., Sabahi, M., Babaei, E., & Vosoughi, N. (2017). Performance and design analysis of an improved non‐isolated multiple input buck DC-DC converter. IET Power Electronics, 10(9), 1034-1045. https://doi.org/10.1049/iet-pel.2016.0750.

Akar, F., Tavlasoglu, Y., Ugur, E., Vural, B., & Aksoy, I. (2015). A bidirectional no isolated multi-input DC-DC converter for hybrid energy storage systems in electric vehicles. IEEE Transactions on Vehicular Technology, 65(10), 7944-7955. https://doi.org/10.1109/TVT.2015.2500683.

Onar, O. C., & Khaligh, A. (2011). A novel integrated magnetic structure-based DC/DC converter for hybrid battery/ultracapacitor energy storage systems. IEEE transactions on smart grid, 3(1), 296-307. https://doi.org/10.1109/TSG.2011.2150250.

Upadhyaya, S., Rana, K., Taneja, M., & Joshi, D. (2020, June). Modelling and control of non-isolated multiport DC/DC converter. In 2020 First IEEE International Conference on Measurement, Instrumentation, Control and Automation (ICMICA) (pp. 1-5). IEEE. https://doi.org/10.1109/ICMICA48462.2020.9242764.

Almutairi, A., Sayed, K., Albagami, N., Abo-Khalil, A. G., & Saleeb, H. (2021). Multi-Port PWM DC-DC Power Converter for Renewable Energy Applications. Energies, 14(12), 3490. https://doi.org/10.3390/en14123490.

Pacheco, V. A., Freitas, L. C., Vieira, J. B., Coelho, E. A. A., & Farias, V. J. (2003, February). Stand-alone photovoltaic energy storage system with maximum power point tracking. In Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003. APEC'03. (Vol. 1, pp. 97-102). IEEE. https://doi.org/10.1109/APEC.2003.1179182.

Babaei, E., Abbasi, O., & Sakhavati, S. (2016, June). An overview of different topologies of multi-port dc/dc converters for dc renewable energy source applications. In 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1-6). IEEE. https://doi.org/10.1109/ECTICon.2016.7561420.

Yalla, S. P., Subudhi, P. S., & Ramachandaramurthy, V. K. (2022). Topological review of hybrid RES based multi‐port converters. IET Renewable Power Generation, 16(6), 1087-1106. https://doi.org/10.1049/rpg2.12356.

Mohammadi, S., Dezhbord, M., Babalou, M., Azizkandi, M. E., & Hosseini, S. H. (2019, February). A new non-isolated multi-input DC-DC converter with high voltage gain and low average of normalized peak inverse voltage. In 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC) (pp. 515-520). IEEE. https://doi.org/10.1109/PEDSTC.2019.8697541.

Chandrasekar, B., Nallaperumal, C., Padmanaban, S., Bhaskar, M. S., Holm-Nielsen, J. B., Leonowicz, Z., & Masebinu, S. O. (2020). Non-isolated high-gain triple port DC-DC buck-boost converter with positive output voltage for photovoltaic applications. IEEE Access, 8, 113649-113666. https://doi.org/10.1109/ACCESS.2020.3003192.

Yi, W., Ma, H., Peng, S., Liu, D., Ali, Z. M., Dampage, U., & Hajjiah, A. (2022). Analysis and implementation of multi-port bidirectional converter for hybrid energy systems. Energy Reports, 8, 1538-1549. https://doi.org/10.1016/j.egyr.2021.12.068.

Farakhor, A., Abapour, M., & Sabahi, M. (2019). Design, analysis, and implementation of a multiport DC–DC converter for renewable energy applications. IET Power Electronics, 12(3), 465-475. http://dx.doi.org/10.1049/iet-pel.2018.5633.

Jalilzadeh, T., & Rostami, N. (2023). New multi‐operational multi‐port DC–DC converter with bidirectional capability. IET Renewable Power Generation, 17(6), 1518-1534. https://doi.org/10.1049/rpg2.12691.

W. Lin, X. Guo, and C. Huang, “Bi-directional DC-DC converters with large conversion ratio based on improved one-cycle control,” in Proceedings of the CSEE, vol. 32, no. 21, pp. 31-37, 2012.

H. Tarzamni, P. Kolahian, A. Nikafrooz, and M. Hamzeh, “A multi-port DC-DC Converter for Bipolar MVDC micro-grid applications,” in IET Power Electronics, vol. 12, no. 7, pp.1841-1849, Mar. 2019. https://doi.org/10.1049/iet-pel.2018.6031.

M. Mao, Q. Cheng, and Y. Ding, “Decentralized coordination power control for islanding microgrid based on PV/BES-VSG,” in CPSS Transactions on Power Electronics and Applications, vol. 3, no. 1, pp.14–24, Mar. 2018.

Y. K. Tran, F. D. Freijedo, and D. Dujic, “Open-loop power sharing characteristic of a three-port resonant LLC converter,” in CPSS Transactions on Power Electronics and Applications, vol. 4, no. 2, pp. 171–179, Jun. 2019.

G. Cao, K. Sun, S. Jiang, S. Lu, and Y. Wang, “A modular DC/DC photovoltaic generation system for HVDC grid connection,” in Chinese Journal of Electrical Engineering, vol. 4, no. 2, pp. 56–64, Jun. 2018.

Liang, Y., Zhang, H., Du, M., & Sun, K. (2020). Parallel coordination control of multi-port DC-DC converter for stand-alone photovoltaic-energy storage systems. CPSS Transactions on Power Electronics and Applications, 5(3), 235-241. https://doi.org/10.24295/CPSSTPEA.2020.00020/

Savrun, M. M., & Atay, A. (2020). Multiport bidirectional DC-DC converter for PV powered electric vehicle equipped with battery and supercapacitor. IET Power Electronics, 13(17), 3931-3939. https://doi.org/10.1049/iet-pel.2020.0759.

Kolahian, P., Tarzamni, H., Nikafrooz, A., & Hamzeh, M. (2019). Multi‐port DC–DC converter for bipolar medium voltage DC micro‐grid applications. IET Power Electronics, 12(7), 1841-1849. https://doi.org/10.1049/iet-pel.2018.6031.

Zhigang, G., & Fenlin, J. (2015, October). Isolated multi-port DC-DC converter based on a high frequency transformer. In 2015 18th International Conference on Electrical Machines and Systems (ICEMS) (pp. 564-568). IEEE.

Liu, S., Zhang, X., Guo, H., & Xie, J. (2010, June). Multiport DC/DC Converter for stand-alone photovoltaic lighting system with battery storage. In 2010 International Conference on Electrical and Control Engineering (pp. 3894-3897). IEEE. https://doi.org/10.1109/iCECE.2010.950.

Subramanian, A., & Karuppiah, S. (2022). Analysis of dual-input three-port isolated DC–DC converter with bidirectional capability. Journal of Power Electronics, 22(4), 711-726. https://doi.org/10.1007/s43236-022-00408-y.

Ramesh, P., Gouda, P. K., Rameshbabu, A., Ramanathan, G., & Bharatiraja, C. (2022). An isolated multi-port bidirectional DC-DC converter for EV applications. Materials Today: Proceedings, 68, 1853-1859. https://doi.org/10.1016/j.matpr.2022.08.047.

Zhu, H., Zhang, D., Zhang, B., Zhou, Z.: A nonisolated three-port DCDC converter and three-domain control method for PV-battery power systems. IEEE Trans. Ind Electron. 62(8), 4937–4947 (2015). https://doi.org/10.1109/TIE.2015.2393831.

G, D., Singh, S.N.: Selection of non-isolated DC-DC converters for solar photovoltaic system. Renew Sustain. Energy Rev. 76(February), 1230-1247 (2017). https://doi.org/10.1016/j.rser.2017.03.130.

Banaei, M.R., Ardi, H., Alizadeh, R., Farakhor, A.: Non-isolated multiinput- single-output DC/DC converter for photovoltaic power generation systems. IET Power Electron. 7(11), 2806–2816 (2014). https://doi.org/10.1049/iet-pel.2013.0977.

Yuan-mao, Y., Cheng, K.W.E.: Multi-input voltage-summation converter based on switched-capacitor. IET Power Electron. 6(9), 1909–1916 (2013). https://doi.org/10.1049/iet-pel.2013.0015.

Sathyan, S., Suryawanshi, H.M., Shitole, A.B., Ballal, M.S., Borghate, V.B.: Soft-switched interleaved DC/DC converter as front-end of multi-inverter structure for micro grid applications. IEEE Trans. Power Electron. 33(9), 7645–7655 (2018). https://doi.org/10.1109/TPEL.2017.2768379.

Wang, B., Xian, L., Kanamarlapudi, V.R.K., Tseng, K.J., Ukil, A., Gooi, H.B.: A digital method of power-sharing and cross-regulation suppression for single-inductor multiple-input multiple-output DC-DC converter. IEEE Trans. Ind. Electron. 64(4), 2836–2847 (2017). https://doi.org/10.1109/TIE.2016.2631438.

Slah, F., Mansour, A., Hajer,M., Faouzi, B.: Analysis, modeling and implementation of an interleaved boost DC-DC converter for fuel cell used in electric vehicle. Int. J. Hydrogen Energy 42(48), 28852-28864 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.068.

Sha, D., Xu, G., Xu, Y.: Utility direct interfaced charger/discharger employing unified voltage balance control for cascaded h-bridge units and decentralized control for CF-DAB modules. IEEE Trans. Ind. Electron. 64(10), 7831-7841 (2017). https://doi.org/10.1109/TIE.2017.2696511.

Wen, H. (2013, June). Determination of the optimal sub-mode for bidirectional dual-active-bridge DC-DC converter with multi-phase-shift control. In 2013 IEEE ECCE Asia Downunder (pp. 596-600). IEEE. https://doi.org/10.1109/ECCE-Asia.2013.6579159.

Wu, H., Chen, R., Zhang, J., Xing, Y., Hu, H., & Ge, H. (2011). A family of three-port half-bridge converters for a stand-alone renewable power system. IEEE Transactions on Power Electronics, 26(9), 2697-2706. https://doi.org/10.1109/TPEL.2011.2125991.

Zeng, J., Qiao, W., & Qu, L. (2015, March). Modelling and control of a three-port DC-DC converter for PV-battery systems. In 2015 IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 1768-1773). IEEE. https://doi.org/10.1109/APEC.2015.7104586.

Zhu, H., Zhang, D., Athab, H. S., Wu, B., & Gu, Y. (2014). PV isolated three-port converter and energy-balancing control method for PV-battery power supply applications. IEEE Transactions on Industrial Electronics, 62(6), 3595-3606. https://doi.org/10.1109/TIE.2014.2378752.

Biswas, S., Dhople, S., & Mohan, N. (2013, November). A three-port bidirectional dc-dc converter with zero-ripple terminal currents for pv/microgrid applications. In IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society (pp. 340-345). IEEE. https://doi.org/10.1109/IECON.2013.6699159.

Multi-port converter for off-grid power system application

Downloads

Published

2023-06-30

How to Cite

Ruaa M. Al-dalawi, Al-Dujaili, A., & A. Pereira, D. (2023). A Comprehensive Review of Multi-Port DC/DC Converters for The Off-Grid System Integration with Renewable Energy Resources. Journal of Techniques, 5(2), 61–73. https://doi.org/10.51173/jt.v5i2.1227

Issue

Section

Engineering

Most read articles by the same author(s)

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.