Performance Improving for the Flat Plate Solar Collectors by Using Nanofluids: Review Study

Authors

  • Mohammed A. Abduljleel Engineering Technical College - Baghdad, Middle Technical University, Baghdad, Iraq
  • Nabil J. Yasin Engineering Technical College - Baghdad, Middle Technical University, Baghdad, Iraq
  • Safaa A. Ghadhban Engineering Technical College - Baghdad, Middle Technical University, Baghdad, Iraq
  • Sumair Ahmed Soomro School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China

DOI:

https://doi.org/10.51173/jt.v6i1.1891

Keywords:

Flat Plate Solar Collector, Thermal Efficiency, Working Fluids, Heat Transfer, Nanofluid

Abstract

In this paper, the literature will be reviewed, and various research works conducted to improve the thermal performance of flat panel solar collectors will be summarized. It will be summarized in more than one way. Firstly, by design using different methodologies and methods to improve the efficiency and the thermal performance of the solar collector by introducing twisted strips that cause increased mixing. Fluids and Friction for FPSCs. To increase heat transfer as well as use porous materials to enhance heat and improve the effectiveness of absorption panels to absorb as much solar radiation as possible as well as thermal insulation methods to reduce losses to surrounding areas. And improve the permeability of the glass cover. Secondly, the use of nanofluids enhances the performance of flat solar collectors instead of the core fluid, and its effect is to improve the thermophysical properties such as thermal conductivity by summarizing previous research using mono nanofluids and hybrid nanofluids. Through studies and research related to the use of mono nanofluids, it was noted that the best nanofluids are those that use CuO and Al₂O₃ particles due to their ease of availability and high thermal conductivity. As for hybrid nanofluids, the best fluids are (CuO + Al₂O₃/water) for the same reason above. As a result of design improvements and the use of nanofluids, temperatures up to (75C°) were obtained.

Downloads

Download data is not yet available.

Author Biographies

Mohammed A. Abduljleel, Engineering Technical College - Baghdad, Middle Technical University, Baghdad, Iraq

      

Nabil J. Yasin, Engineering Technical College - Baghdad, Middle Technical University, Baghdad, Iraq

       

Safaa A. Ghadhban, Engineering Technical College - Baghdad, Middle Technical University, Baghdad, Iraq

       

Sumair Ahmed Soomro, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China

Key Laboratory of Advanced Technologies of Materials, Ministry of Education

References

Ozturk I, Aslan A, Kalyoncu H. Energy consumption and economic growth relationship: evidence from panel data for low and middle income countries. Energy police, 38(8), 4422-4428, 2010, https://doi.org/10.1016/j.enpol.2010.03.071.

Liu Z. Global energy interconnection. Supply Demand Glob Energy Electricity; 4:101–82, 2015, https://doi.org/10.1016/j.apenergy.2014.09.081.

Babier Edward B. A global green new deal. 1st ed. Nairobi, Kenya: UNEP; 2009. www.cambridge.org/9780521132022.

Karaghouli AA, Renne D, Kazmerski LL. Technical and economic assessment of photovoltaic-driven desalination systems. Renew Energy; 35(2), 323–8, 2010, https://doi.org/10.1016/j.renene.2009.05.018.

Philibert. Solar energy perspectives. Paris: International Energy Agency. IEA; 2011. https://doi.org/10.1787/20792581

Prasad D. Solar power. USA: The Images Publishing Group Pty Ltd & Earthscan; 2005.

Liu SY, Perng YH, Ho YF. The effect of renewable energy application on taiwan buildings: what are the challenges and strategies for solar energy exploitation. Renew Sustain Energy Rev; 28, 92–106, 2013, https://doi.org/10.1016/j.rser.2013.07.018.

Minardi JE, Chuang HN. Performance of a “Black” liquid flat-plate solar collector. Sol Energy; 17(3), 179–183, 1975, https://doi.org/10.1016/0038-092X(75)90057-2.

Das SK, Choi SU, Yu W, Pradeep T. Nanofluids: science and technology. John Wiley& Sons; 2007.

Eastman JA, Choi US, Li S, Thompson LJ, Lee S. Enhanced thermal conductivity through the development of nanofluids. Boston, USA: Fall Meeting of the Materials Research Society (MRS); 1996. DOI: https://doi.org/10.1557/PROC-457-3.

Hwang Y, Lee JK, Lee CH, Jung YM, Cheong SI, Lee CG, Ku BC, Jang SP. Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta; 455(1–2), 70–74, 2007, https://doi.org/10.1016/j.tca.2006.11.036.

A. Ganjehkaviri et al. Multi-objective particle swarm optimization of flat plate solar collector using constructal theory Energy (2020). https://doi.org/10.1016/j.energy.2019.116846.

Sarsam, W.S., Kazi, S., Badarudin, A., A review of studies on using nanofluids in flat-plate solar collectors. Sol. Energy 122, 1245-1265, 2015, https://doi.org/10.1016/j.solener.2015.10.032.

Yassen, T.A.; Mokhlif, N.; Eleiwi, M. Performance investigation of an integrated solar water heater with corrugated absorber surface for domestic use. Renew. Energy, 138, 852–860, 2019, https://doi.org/10.1016/j.renene.2019.01.114.

Visa, I.; Moldovan, M.; Duta, A. Novel triangle flat plate solar thermal collector for facades integration. Renew. Energy, 143, 252–262, 2019, https://doi.org/10.1016/j.renene.2019.05.021.

Zhou, L.; Wang, Y.; Huang, Q. Parametric analysis on the performance of flat plate collector with transparent insulation material. Energy, 174, 534–542, 2019, https://doi.org/10.1016/j.energy.2019.02.168.

Filipovi´c, P.; Dovi´c, D.; Ranilovi´c, B.; Horvat, I. Numerical and experimental approach for evaluation of thermal performances of a polymer solar collector. Renew. Sustain. Energy Rev., 112, 127–139, 2019, https://doi.org/10.1016/j.rser.2019.05.023.

Wang, D.; Liu, H.; Liu, Y.; Xu, T.; Wang, Y.; Du, H.; Wang, X.; Liu, J. Frost and High-temperature resistance performance of a novel dual-phase change material flat plate solar collector. Sol. Energy Mater. Sol. Cells, 201, 110086, 2019, https://doi.org/10.1016/j.solmat.2019.110086.

Zhou, F.; Ji, J.; Yuan, W.; Zhao, X.; Huang, S. Study on the PCM flat-plate solar collector system with antifreeze characteristics. Int. J. Heat Mass Transf., 129, 357, 2019, https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.114.

Balaji, K.; Kumar, B.; Sakthivadivel, D.; Vigneswaran, V.; Iniyan, S. Experimental investigation on flat plate solar collector using frictionally engaged thermal performance enhancer in the absorber tube. Renew. Energ. https://doi.org/10.1016/j.renene.2019.04.078.

Kanimozhi, B.; Shinde, Y.N.; Bedford, S.P.; Kanth, K.S.; Kumar, S.V. Experimental Analysis of Solar Water Heater Using Porous Medium with Agitator. Mater. Today Proc., 16, 1204–1211, 2019, https://doi.org/10.1016/j.matpr.2019.05.215.

Fan, M.; You, S.; Gao, X.; Zhang, H.; Li, B.; Zheng, W.; Sun, L.; Zhou, T. A comparative study on the performance of liquid flat-plate solar collector with a new V- corrugated absorber. Energy Convers. Manag., 184, 235–248, 2019, https://doi.org/10.1016/j.enconman.2019.01.044.

Felipe et al. https://doi.org/10.1016/j.applthermaleng.2019.113790 Received 4 October 2018; Received in revised form 28 April 2019; Applied Thermal Engineering 158, 113790 Available online 24 May 2019. 1359-4311/ © 2019 Elsevier Ltd. All rights reserved. https://doi.org/10.1016/j.applthermaleng.2019.113790.

K. Balaji et al. Exergy, economic and environmental analysis of forced circulation flat plate solar collector using heat transfer enhancer in riser tube J Clean Prod, (2018). https://doi.org/10.1016/j.jclepro.2017.10.093.

R.W. Moss et al. Design and fabrication of a hydroformed absorber for an evacuated flat plate solar collector Appl Therm Eng (2018). https://doi.org/10.1016/j.applthermaleng.2018.04.033.

M. Ammar et al. Performance optimization of flat plate solar collector through the integration of different slats arrangements made of transparent insulation material Sustain Energy Technol Assessments(2021). https://doi.org/10.1016/j.seta.2021.101237.

S.A. Sakhaei et al. Thermal performance analysis of a flat plate solar collector by utilizing helically corrugated risers: an experimental study Sol Energy (2020). https://doi.org/10.1016/j.solener.2020.06.023.

R. Kansara et al. Performance assessment of flat-plate solar collector with internal fins and porous media through an integrated approach of CFD and experimentation Int J Therm Sci (2021). https://doi.org/10.1016/j.ijthermalsci.2021.106932.

S.A. Sakhaei et al. Thermal behavior of a flat plate solar collector with simultaneous use of helically heat collecting tubes and phase change materials Sustain Energy Technol Assessments, (2021). https://doi.org/10.1016/j.seta.2021.101279.

A. Mwesigye, T. B.Ochende and J.P. Meyer, “Multi-objective and thermodynamic optimization of a parabolic trough receiver with perforated plate inserts”, Applied Thermal Engineering, 77, 42–56, 2015, https://doi.org/10.1016/j.applthermaleng.2014.12.018.

Sh. Ghadirijafarbeigloo, A. Zamzamian and M. Yaghoubic, “3-D numerical simulation of heat transfer and turbulent flow in a receiver tube of solar parabolic trough concentrator with louvered twisted-tape inserts” , Energy Procedia, 49, 373 – 380, 2014, https://doi.org/10.1016/j.egypro.2014.03.040.

D. R.Waghole, R.M.Warkhedkar, V.S. kulkarni and R.K. Shrivastv, “Experimental investigations on heat transfer and friction factor of silver nanofliud in absorber/receiver of parabolic trough collector with twisted tape inserts”, Energy Procedia, 45, 558 – 567, 2014, https://doi.org/10.1016/j.egypro.2014.01.060.

S. Salman, A. Kadhum, S. Takriff and B. Mohamad, “Heat transfer enhancement of laminar nanofluids flow in a circular tube fitted with parabolic-cut twisted tape inserts” , The Scientific World Journal (2014) 1-7. https://doi.org/10.1155/2015/180841.

O.A. Jaramillo a, Monica Borunda , K.M. Velazquez-Lucho d and M. Robles, “Parabolic trough solar collector for low enthalpy processes: an analysis of the efficiency enhancement by using twisted tape inserts”, Renewable Energy 93 (2016) 125–141. https://doi.org/10.1016/j.renene.2016.02.046.

[35] Genc A.M., Ezan M.A., Turgut A. Thermal performance of a nanofluid-based flat plate solar collector: A transient numerical study Appl Therm Eng, 130 (2018), pp. 395-407, https://doi.org/10.1016/j.applthermaleng.2017.10.166.

M. Mirzaei, S.M.S. Hosseini, A.M.M. Kashkooli Assessment of Al2O3 nanoparticles for the optimal operation of the flat plate solar collector Appl. Therm. Eng., 134 (2018), pp. 68-77, https://doi.org/10.1016/j.applthermaleng.2018.01.104.

F. Kiliç et al. Effect of titanium dioxide/water nano fluid use on thermal performance of the flat plate solar collector Sol Energy (2018). https://doi.org/10.1016/j.solener.2018.02.002.

S.K. Verma et al. Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid Sol Energy (2018). https://doi.org/10.1016/j.solener.2018.04.017.

Y. Tong et al. Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid, and CuO nanofluid Appl Therm Eng (2019). https://doi.org/10.1016/j.applthermaleng.2019.113959.

S. Choudhary et al. Influence of stable zinc oxide nanofluid on thermal characteristics of flat plate solar collector Renew Energy. (2020). https://doi.org/10.1016/j.renene.2020.01.142.

N.S. Rajput, D.D. Shukla, D. Rajput, S.K. Sharma Performance analysis of flat plate solar collector using Al2O3/distilled water nanofluid: An experimental investigation Mater Today: Proc, 10 (2019), pp. 52-59. https://doi.org/10.1016/j.matpr.2019.02.188.

A. Maouassi, A. Baghidja, S. Daoud, N. Zeraibi, Numerical study of nanofluid heat transfer SiO2 through a solar flat plate collector, Int. J. Heat Technol. 35(2017) 619–625. https://doi.org/10.1016/j.matpr.2019.02.188.

A.A. Hawwash, A.K. Abdel Rahman, S.A. Nada, S. Ookawara, Numerical investigation and experimental verification of performance enhancement of flat plate solar collector using nanofluids, Appl. Therm. Eng. 130 (2018) 363–3. https://doi.org/10.1016/j.applthermaleng.2017.11.027.

Y. Krishna,A.Razak, A. Afzal. The CFD analysis of flat plate collector-nanofluid as working medium. in: AIP Conference Proceedings. 2018. AIP Publishing LLC. https://doi.org/10.1016/j.applthermaleng.2017.11.027.

H.J. Jouybari, S. Saedodin, A. Zamzamian, M.E. Nimvari, S. Wongwises, Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: An experimental study, Renewable Energy 114 Part B(2017) 1407–1418. https://doi.org/10.1016/j.renene.2017.07.008.

Ziyadanogullari, N.B.; Yucel, H.; Yildiz, C. Thermal performance enhancement of flat-plate solar collectors by means of three different nanofluids. Therm. Sci. Eng. Prog. 2018, 8, 55–65. https://doi.org/10.1016/j.tsep.2018.07.005.

Bazdidi-Tehrani F., Khabazipur A., Vasefi S.I. Flow and heat transfer analysis of TiO2/water nanofluid in a ribbed flat-plate solar collector. Renewable Energy 2018; 122: 406–418. https://doi.org/10.1016/j.renene.2018.01.056.

Yacine Khetib , Hala M. Abo-Dief , Abdullah K. Alanazi , S. Mohammad Sajadi , Rasool Kalbasi , Mohsen Sharifpur Effect of nanoparticles shape on turbulent nanofluids flow within a solar collector by using hexagonal cross-section tubes Sustainable Energy Technologies and Assessments Volume 51, June 2022, 101843.

Omar A. Hussein, Mugdad Hamid Rajab, Omer A. Alawi, Mayadah W. Falah, Ali H. Abdelrazek, Waqar Ahmed, Mahmoud Eltaweel, Raad Z. Homod, Zaher Mundher Yaseen “Multiwalled carbon nanotubes-titanium dioxide nanocomposite for flat plate solar collectors applications” Applied Thermal Engineering, Volume 229, 5 July 2023.

S. Polvongsri, T. Kiatsiriroat, Enhancement of flat-plate solar collector thermal performance with silver nano-fluid, Paper presented at the Second TSME International Conference on Mechanical Engineering, 2011.

H. Chaji, Y. Ajabshirchi, E. Esmaeilzadeh, S.Z. Heris, M. Hedayatizadeh, M. Kahani, Experimental study on thermal efficiency of flat plate solar collector using TiO2-water nanofluids, Modern Appl. Sci. 7 (10), 2013.

S.C. Vijayakumaar, R.L. Shankar, K. Babu, Effect of CNT-H2O nanofluids on the performance of solar collector – an experimental investigation, Paper Presented at the International Conference on Advanced Nanomaterials and Emerging Engineering Technologies, New Delhi, India, 2013 https://doi.org/10.1016/j.solener.2015.10.032,

Z. Said, M.H. Sajid, M.A. Alim, R. Saidur, N.A. Rahim, Experimental investigation of the thermophysical properties of Al2O3-nanofluid and its effect on a flat plate collector, Int. Commun. Heat Mass Transfer 48 (2013) 99–107, https://doi.org/10.1016/j.icheatmasstransfer.2013.09.005.

G. Colangelo, E. Favale, A. Risi, D. Laforgia, A new solution for reduced sedimentation flat panel solar collector using nanofluids, Appl. Energy 111(2013), https://doi.org/10.1016/j.apenergy.2013.04.069 80–93.

J. J. Michael, S. Iniyan, Performance of copper oxide/water nanofluids in a flat plate solar water heater under natural and forced circulations, Energy Convers. Manage. 95 (2015) 160–169. https://doi.org/10.1016/j.enconman.2015.02.017.

T. Yousefi, E. Shojaeizadeh, F. Veysi, S. Zinadini, An experimental investigation on the effect of ph variation of MWCNT-H2O nanofluids on the efficiency of a flat plate solar collector, Sol. Energy 86 (2) (2012) 771–779. https://doi.org/10.1016/j.solener.2011.12.003.

E. Farajzadeh, S. Movahed, R. Hosseini, Experimental and numerical investigations on the effect of Al2O3/TiO2H2O nanofluids on thermal efficiency of the flat plate solar collector, Renewable Energy 118 (2018). https://doi.org/10.1016/j.renene.2017.10.102.

K. Farhana, K. Kadirgama, M.M. Noor, M.M. Rahman, D. Ramasamy, A.S.F. Mahamude, CFD modelling of different properties of nanofluids in header and riser tube of flat plate solar collector, IOP Conf. Series: Mater. Sci. Eng. 469 (2019) 012041, DOI 10.1088/1757-899X/469/1/012041.

Jawed Mustafa, Saeed Alqaed , Mohsen Sharifpur Evaluation of energy efficiency, visualized energy, and production of environmental pollutants of a solar flat plate collector containing hybrid nanofluid, 2022. https://doi.org/10.1016/j.seta.2022.102399.

Engy Elshazly , Ahmed A. Abdel-Rehim , Iman El-Mahallawi 4E study of experimental thermal performance enhancement of flat plate solar collectors using MWCNT, Al2O3, and hybrid MWCNT/ Al2O3 nanofluids. Results in Engineering Volume 16, December 2022, 100723.

Kuwar Mausam , Ashutosh Pare , Subrata Kumar Ghosh , A.K. Tiwari Thermal performance analysis of hybrid-nanofluid based flat plate collector using Grey relational analysis (GRA): An approach for sustainable energy harvesting. Thermal Science and Engineering ProgressVolume 37, 1 January 2023, 101609 https://doi.org/10.1016/j.tsep.2022.101609.

Zafar Said , Prabhakar Sharma , L. Syam Sundar , Changhe Li , Duy Cuong Tran, Nguyen Dang Khoa Pham , Xuan Phuong Nguyen Improving the thermal efficiency of a solar flat plate collector using MWCNT-Fe3O4/ water hybrid nanofluids and ensemble machine learning Case Studies in Thermal Engineering Volume 40, December 2022, 102448.

Sujit Kumar Verma, Arun Kumar TiwarI, Sandeep Tiwari, Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Solar Energy167 (2018) 231–241. https://doi.org/10.1016/j.solener.2018.04.017.

Omar A. Hussein, Khairul Habib, Ali S. Muhsan, R. Saidur, Omer A. Alawi, Thamir K. Ibrahim; Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid, Solar Energy Volume 204, 1 July 2020, Pages 208-222, https://doi.org/10.1016/j.solener.2020.04.034.

Montasser S. Tahat, Ali Cemal Benim; Experimental Analysis on Thermophysical Properties of Al2O3/CuO Hybrid Nano Fluid with its Effects on Flat Plate Solar Collector, Defect and Diffusion Forum, (Volume 374), 148-156, https://doi.org/10.4028/www.scientific.net/DDF.374.148.

Prakasam Michael, Mohammed Almeshaal, Thottipalayam Vellingiri Arjunan; Utilization of zinc-ferrite/water hybrid nanofluids on thermal performance of a flat plate solar collector—a thermal modeling approach, Environmental Science and Pollution Research volume 29, pages78848–78861 (2022),Published: 14 June 2022.

Hossein Nabi, Mohsen Pourfallah, Mosayeb Gholinia, Omid Jahanian; Increasing heat transfer in flat plate solar collectors using various forms of turbulence-inducing elements and CNTs-CuO hybrid nanofluids, Case Studies in Thermal Engineering Volume 33, May 2022, 101909, https://doi.org/10.1016/j.csite.2022.101909.

Vednath P Kalbande, Pramod V Walke, Kishor Rambhad, Yogesh Nandanwar and Man Mohan; Performance evaluation of energy storage system coupled with flat plate solar collector using hybrid nanofluid of CuO+Al2O3/water, Journal of Physics: Conference Series, Volume 1913, DOI 10.1088/1742-6596/1913/1/012067.

Qingang Xiong , Tahar Tayebi , Mohsen Izadi , Abuzar Abid Siddiqui , Tehmina Ambreen , Larry K.B. Li ; Numerical analysis of porous flat plate solar collector under thermal radiation and hybrid nanoparticles using two-phase model, Sustainable Energy Technologies and AssessmentsVolume 47, October 2021, 101404, https://doi.org/10.1016/j.seta.2021.101404.

Zafar Said , Prabhakar Sharma , L. Syam Sundar , Duy Cuong Tran , Nguyen Dang Khoa Pham , Xuan Phuong Nguyen; Improving the thermal efficiency of a solar flat plate collector using MWCNT-Fe3O4/water hybrid nanofluids and ensemble machine learning, Case Studies in Thermal EngineeringVolume 40, December 2022, 102448, https://doi.org/10.1016/j.csite.2022.102448.

Eric C. Okonkwo , Ifeoluwa Wole-Osho , Doga Kavaz , Muhammad Abid , Tareq Al-Ansari ; Thermodynamic evaluation and optimization of a flat plate collector operating with alumina and iron mono and hybrid nanofluids; Sustainable Energy Technologies and Assessments Volume 37, February 2020, 100636, https://doi.org/10.1016/j.seta.2020.100636.

Yacine Khetib , Ali Alzaed , Ahamd Tahmasebi , Goshtasp Cheraghian; Influence of using innovative turbulators on the exergy and energy efficacy of flat plate solar collector with DWCNTs-TiO2/water nanofluid; Sustainable Energy Technologies and Assessments Volume 51, June 2022, 101855; https://doi.org/10.1016/j.seta.2021.101855.

Kedri Janardhana , A Sivakumar , G. Jerome Nithin Gladson , C. Ramesh , A. Syed Musthafa , R. Gopinathan ; Study on the performance of a flat plate solar water heater using a hybrid nanofluid; materials today Volume 69, Part 3, 2022, Pages 1145-1149.

Kuwar Mausam , Ashutosh Pare , Subrata Kumar Ghosh , A.K. Tiwari ; Thermal performance analysis of hybrid-nanofluid based flat plate collector using Grey relational analysis (GRA): An approach for sustainable energy harvesting; Thermal Science and Engineering ProgressVolume 37, 1 January 2023, 101609, https://doi.org/10.1016/j.tsep.2022.101609.

Zafar Said , Prabhakar Sharma , L. Syam Sundar , Van Giao Nguyen , Viet Dung Tran , Van Vang Le; Using Bayesian optimization and ensemble boosted regression trees for optimizing thermal performance of solar flat plate collector under thermosyphon condition employing MWCNT-Fe3O4/water hybrid nanofluids; Sustainable Energy Technologies and AssessmentsVolume 53, Part C, October 2022, 102708, https://doi.org/10.1016/j.seta.2022.102708.

Engy Elshazly , Ahmed A. Abdel-Rehim , Iman El-Mahallawi ; 4E study of experimental thermal performance enhancement of flat plate solar collectors using MWCNT, Al2O3, and hybrid MWCNT/ Al2O3 nanofluids; Results in Engineering Volume 16, December 2022, 100723, https://doi.org/10.1016/j.rineng.2022.100723.

LessonB. Saleh, Lingala Syam Sundar; Thermal Efficiency, Heat Transfer, and Friction Factor Analyses of MWCNT + Fe3O4/Water Hybrid Nanofluids in a Solar Flat Plate Collector under Thermosyphon Condition; https://doi.org/10.3390/pr9010180.

Intissar Harrabi, Mohamed Hamdi & Majdi Hazami; Potential of simple and hybrid nanofluid enhancement in performances of a flat plate solar water heater under a typical North-African climate (Tunisia); Environmental Science and Pollution Research volume 30, pages35366–35383 (2023),

L.S. Sundar, A. Kirubeil, V. Punnaiah, M.K. Singh, A.C.M. Sousa Effectiveness analysis of solar flat plate collector with Al2O3 water nanofluids and with longitudinal strip inserts. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.025.

V. Bianco, F. Scarpa, L.A. Tagliafico, Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector, Renewable Energy. 116 (Part A), 9–21, 2018, https://doi.org/10.1016/j.renene.2017.09.067.

Schematic drawing for the flat plate collector [13]; 1) Aluminium frame, 2) Silicone seal, 3) Side wall thermal insulation, 4) Back wall thermal insulation, 5) Absorber plate, 6) Copper tubes, 7) Glass cover, 8) Aluminum back

Downloads

Published

2024-03-31

How to Cite

Mohammed A. Abduljleel, Nabil J. Yasin, Safaa A. Ghadhban, & Sumair Ahmed Soomro. (2024). Performance Improving for the Flat Plate Solar Collectors by Using Nanofluids: Review Study. Journal of Techniques, 6(1), 52–68. https://doi.org/10.51173/jt.v6i1.1891

Issue

Section

Engineering