Optical Observations of Sputtered Au-nanostructures and Characterizations

Authors

  • Sabah Jameel Mezher Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
  • Mohammed O. Dawood Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
  • Bahjat B. Kadhim Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq

DOI:

https://doi.org/10.51173/jt.v6i1.1418

Keywords:

Au Nanoparticles, DC-Sputtering, Optical Properties, XRD, AFM

Abstract

o develop novel optoelectronic devices, controlling and predetermined absorption is necessary. In the current work, the gold nano-islands were sputtered onto quartz surface substrates using a DC sputtering unit with an optimized chamber. The effects of the sputtering time (10, 15, and 20 seconds) on the characteristics of the golden layers deposited on quartz substrates were studied. Au nanofilms were investigated by XRD (X-ray diffraction), UV-Vis (ultraviolet-visible light) diffractometer, and AFM (atomic force microscopy) techniques. The thicknesses of the three films prepared at different sputtering times (10, 15, and 20 seconds) were calculated using the theoretical deposition formula method. The average layer thickness, and hence the size of the golden crystallites, rose from 6.8 to 13.6 nm when the sputtering period was increased. The X-ray spectra revealed a very distinguish peak at (111), pointing that the gold single crystal has fully oriented along [111] and the gold film has a pure crystalline Fcc structure. When deposition times are lengthened, the color of the resulting films changes from blue to green. Nano-films have seen important changes in their surface shape and roughness. The structural layer of Au's surface is remarkably semi-spherical, giving it the appearance of spherolytic and hummock-like. Analyzing the UV-VIS spectra of the precipitated structures using Tauc's paradigm revealed the optical energy gap (non-zero Eg in the range of 2.36 to 2.38 eV) that is associated with the nanostructure's semiconducting properties. In addition, as the sputtering duration increases from 10 to 20 seconds, the wavelengths at which peak values of the surface plasmon resonance occur shift from 610 to 650 nm, and the widths of the peaks rise. The AFM images of the ultra-thin Au layers showed smooth surfaces whose roughness decreases from 1.82 to 0.673 nm with increasing sputtering time from 10 to 20 nm. Solar cells can take advantage of the higher absorption in the blue spectrum region by using a set of depositing parameters and prescribed thicknesses. In addition, the formation of nano-islands can also be used as nucleation sites (seed layer) to promote the growth of various nanostructures to obtain a good aspect ratio and improve the performance of various optoelectronic devices and gas sensors.

Downloads

Download data is not yet available.

Author Biographies

Sabah Jameel Mezher, Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq

    

Mohammed O. Dawood, Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq

   

Bahjat B. Kadhim, Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq

          

References

R. A. McINTYRE, “Common nano-materials and their use in real world applications,” Sci. Prog., vol. 95, no. 1, pp. 1–22, 2012, doi: doi: 10.3184/003685012X13294715456431.

Z. H. Mohammad, F. Ahmad, S. A. Ibrahim, and S. Zaidi, “Application of nanotechnology in different aspects of the food industry,” Discov. Food, vol. 2, no. 1, p. 12, 2022, doi: https://doi.org/10.1007/s44187-022-00013-9.

I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., vol. 12, no. 7, pp. 908–931, 2019, doi: https://doi.org/10.1016/j.arabjc.2017.05.011.

A. Axelevitch, B. Apter, and G. Golan, “Simulation and experimental investigation of optical transparency in gold island films,” Opt. Express, vol. 21, no. 4, pp. 4126–4138, 2013, doi: https://doi.org/10.1364/OE.21.004126.

M. Pan et al., “Noble metal nanostructured materials for chemical and biosensing systems,” Nanomaterials, vol. 10, no. 2, p. 209, 2020, doi: https://doi.org/10.3390/nano10020209.

H. Zhong et al., “Thermal-stability resonators for visible light full-spectrum perfect absorbers,” Sol. Energy, vol. 208, pp. 445–450, 2020, doi: https://doi.org/10.1016/j.solener.2020.08.026.

S. Malik, K. Muhammad, and Y. Waheed, “Nanotechnology: A Revolution in Modern Industry,” Molecules, vol. 28, no. 2, p. 661, 2023, doi: https://doi.org/10.3390/molecules28020661.

P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A, vol. 13, no. 6, p. 2287, 1976, doi: https://doi.org/10.1103/PhysRevA.13.2287.

R. S. Sennett and G. D. Scott, “The structure of evaporated metal films and their optical properties,” Josa, vol. 40, no. 4, pp. 203–211, 1950, doi: https://doi.org/10.1364/JOSA.40.000203.

F. Gao and Z. Gu, “Melting temperature of metallic nanoparticles,” in Handbook of Nanoparticles, Springer, 2016, pp. 661–690. doi: https://doi.org/10.1007/978-3-319-15338-4_6.

C. Kan, X. Zhu, and G. Wang, “Single-crystalline gold microplates: synthesis, characterization, and thermal stability,” J. Phys. Chem. B, vol. 110, no. 10, pp. 4651–4656, 2006, doi: https://doi.org/10.1021/jp054800d.

I. Fratoddi et al., “Electronic properties of a functionalized noble metal nanoparticles covalent network,” J. Phys. Chem. C, vol. 121, no. 33, pp. 18110–18119, 2017, doi: https://doi.org/10.1021/acs.jpcc.7b07176.

M. Amer and A. J. Ghazai, “Effect of Films Thickness on Structural and Optical Properties of Gold (Au) Thin Films Prepared by DC Magnetron Sputtering,” Iraqi J. Sci., pp. 1549–1556, 2022, doi: https://doi.org/10.24996/ijs.2022.63.4.15.

J. C. Maxwell-Garnett, “XII. Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London. Ser. A, Contain. Pap. a Math. or Phys. Character, vol. 203, no. 359–371, pp. 385–420, 1904, doi: https://doi.org/10.1098/rsta.1904.0024.

M. E. Messing, K. Hillerich, J. Johansson, K. Deppert, and K. A. Dick, “The use of gold for fabrication of nanowire structures,” Gold Bull., vol. 42, pp. 172–181, 2009, doi: https://doi.org/10.1007/BF03214931.

M. González-Garnica et al., “One dimensional Au-ZnO hybrid nanostructures based CO2 detection: Growth mechanism and role of the seed layer on sensing performance,” Sensors Actuators B Chem., vol. 337, p. 129765, 2021, doi: https://doi.org/10.1016/j.snb.2021.129765.

A. Serrano et al., “Effect of the seed layer on the growth and orientation of the ZnO nanowires: Consequence on structural and optical properties,” Vacuum, vol. 146, pp. 509–516, 2017, doi: https://doi.org/10.1016/j.vacuum.2017.03.010.

Y. A. Attia, T. A. Altalhi, and A. A. Gobouri, “Thermal stability and hot carrier dynamics of gold nanoparticles of different shapes,” Adv. Nanoparticles, vol. 4, no. 04, p. 85, 2015, doi: 10.4236/anp.2015.44010.

H. B. Liu, J. A. Ascencio, M. Perez-Alvarez, and M. J. Yacaman, “Melting behavior of nanometer sized gold isomers,” Surf. Sci., vol. 491, no. 1–2, pp. 88–98, 2001, doi: https://doi.org/10.1016/S0039-6028(01)01351-6.

M. B. Mohamed, Z. L. Wang, and M. A. El-Sayed, “Temperature-dependent size-controlled nucleation and growth of gold nanoclusters,” J. Phys. Chem. A, vol. 103, no. 49, pp. 10255–10259, 1999, doi: https://doi.org/10.1021/jp9919720.

F. Liu, P. Rugheimer, E. Mateeva, D. E. Savage, and M. G. Lagally, “Response of a strained semiconductor structure,” Nature, vol. 416, no. 6880, p. 498, 2002, doi: https://doi.org/10.1038/416498a.

J. Matovic and Z. Jakšić, “Nanomembrane: A new MEMS/NEMS building block,” Micro Electron. Mech. Syst., pp. 61–84, 2009, doi: 10.5772/7004.

A. Curulli, “Nanomaterials in electrochemical sensing area: Applications and challenges in food analysis,” Molecules, vol. 25, no. 23, p. 5759, 2020, doi: https://doi.org/10.3390/molecules25235759.

V. Švorčík, O. Kvítek, O. Lyutakov, J. Siegel, and Z. Kolská, “Annealing of sputtered gold nano-structures,” Appl. Phys. A, vol. 102, no. 3, pp. 747–751, 2011, doi: https://doi.org/10.1007/s00339-010-5977-5.

Z. I. Ali, S. I. Radwan, M. M. Shehata, O. A. Ghazy, and H. H. Saleh, “Structural, optical and electrical properties of PVC/Au thin films prepared by sputtering process,” Opt. Quantum Electron., vol. 53, pp. 1–14, 2021, doi: https://doi.org/10.1007/s11082-021-02876-1.

M. Stoian, T. Maurer, S. Lamri, and I. Fechete, “Techniques of Preparation of Thin Films: Catalytic Combustion,” Catalysts, vol. 11, no. 12, p. 1530, 2021, doi: https://doi.org/10.3390/catal11121530.

E. Irissou, B. Le Drogoff, M. Chaker, M. Trudeau, and D. Guay, “Nanostructured gold thin films prepared by pulsed laser deposition,” J. Mater. Res., vol. 19, no. 3, pp. 950–958, 2004, doi: https://doi.org/10.1557/jmr.2004.19.3.950.

B. Abbotsford and 33844 King Road Canada, V2S 7M8, Business Center, “Plasma Sputter Coater with Vacuum Pump, MNT-JS1600.,MicroNano Tools/Micromolding Solutions Inc.” https://www.micronanotools.com/products/single-target-sputtering-coater-with-vacuum-pump

A. D. Faisal, M. O. Dawood, and K. Hassoon, “Observation of blue shift absorption for surface plasmon resonance in gold nano-islands,” Int. J. Nanoelectron. Mater., vol. 12, p. 265, 2019, doi: http://dspace.unimap.edu.my:80/xmlui/handle/123456789/61123.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Švorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett., vol. 6, pp. 1–9, 2011, doi: https://doi.org/10.1186/1556-276X-6-96.

M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, and G. Kiriakidis, “ZnO transparent thin films for gas sensor applications,” Thin Solid Films, vol. 515, no. 2, pp. 551–554, 2006, doi: https://doi.org/10.1016/j.tsf.2005.12.295.

S. H. Sabeeh, “The effects of sputtering time on Cds thin film solar cell deposited by DC plasma sputtering method,” Eng. Technol. J., vol. 36, no. 2 Part C, 2018, doi: https://doi.org/10.30684/etj.36.2C.5.

M. Fikry, M. Mohie, M. Gamal, A. Ibrahim, and G. Genidy, “Superior control for physical properties of sputter deposited ITO thin-films proper for some transparent solar applications,” Opt. Quantum Electron., vol. 53, pp. 1–16, 2021, doi: https://doi.org/10.1007/s11082-021-02770-w.

H. Stanjek and W. Häusler, “Basics of X-ray Diffraction,” Hyperfine Interact., vol. 154, pp. 107–119, 2004, doi: https://doi.org/10.1023/B:HYPE.0000032028.60546.38.

D. D. Le Pevelen, “Small molecule X-ray crystallography, theory and workflow,” 2010, https://www.sciencedirect.com/topics/medicine-and-dentistry/braggs-law.

W. Wong-Ng, H. F. McMurdie, C. R. Hubbard, and A. D. Mighell, “JCPDS-ICDD research associateship (cooperative program with NBS/NIST),” J. Res. Natl. Inst. Stand. Technol., vol. 106, no. 6, p. 1013, 2001, doi: 10.6028/jres.106.052.

H. E. Swanson, Standard X-ray diffraction powder patterns, vol. 25. US Department of Commerce, National Bureau of Standards, 1953, [Online] Available: https://books.google.iq/books?hl=en&lr=&id=CtVf1TRPoWcC&oi=fnd&pg=PA2&dq=Swanson,+Howard+Eugene.+Standard+X-ray+diffraction+powder+patterns&ots=8iHhzF5LLL&sig=dqjok9rKZpfD9gqCYMbCC4m-nys&redir_esc=y#v=onepage&q&f=false

A. Monshi, M. R. Foroughi, and M. R. Monshi, “Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD,” World J. nano Sci. Eng., vol. 2, no. 3, pp. 154–160, 2012, doi: https://doi:10.4236/wjnse.2012.23020.

Y. Al-Douri et al., “Structural and optical insights to enhance solar cell performance of CdS nanostructures,” Energy Convers. Manag., vol. 82, pp. 238–243, 2014, doi: https://doi.org/10.1016/j.enconman.2014.03.020.

M. A. Abdulsattar, “Ab initio large unit cell calculations of the electronic structure of diamond nanocrystals,” Solid State Sci., vol. 13, no. 5, pp. 843–849, 2011, doi: https://doi.org/10.1016/j.solidstatesciences.2011.03.009.

M. A. Abdulsattar, “Size variation of infrared vibrational spectra from molecules to hydrogenated diamond nanocrystals: a density functional theory study,” Beilstein J. Nanotechnol., vol. 4, no. 1, pp. 262–268, 2013, doi: https://doi.org/10.3762/bjnano.4.28.

V. Švorčík et al., “Annealing of gold nanostructures sputtered on glass substrate,” Appl. Phys. A, vol. 102, pp. 605–610, 2011, doi: https://doi.org/10.1007/s00339-010-6167-1.

R. A. Al-wardy and S. K. Rahi, “The Physical Properties and Applications of Gold Nanoparticles (Au NPs),” Samarra J. Pure Appl. Sci., vol. 3, no. 1, pp. 74–86, 2021, doi: https://www.iasj.net/iasj/download/6e8e492168296c75.

J. C. Yannopoulos, “Physical and chemical properties of gold,” in The Extractive Metallurgy of Gold, Springer, 1991, pp. 11–23. doi: https://doi.org/10.1007/978-1-4684-8425-0_2.

E. Roduner, “Size matters: why nanomaterials are different,” Chem. Soc. Rev., vol. 35, no. 7, pp. 583–592, 2006, doi: https://doi.org/10.1039/B502142C.

V. Svorcık, J. Zehentner, V. Rybka, P. Slepicka, and V. Hnatowicz, “Characterization of thin gold layers on polyethyleneterephthalate: transition from discontinuous to continuous, homogenous layer,” Appl. Phys. A, vol. 75, pp. 541–544, 2002, doi: https://doi.org/10.1007/s003390101024.

M. Brust, D. Bethell, C. J. Kiely, and D. J. Schiffrin, “Self-assembled gold nanoparticle thin films with nonmetallic optical and electronic properties,” Langmuir, vol. 14, no. 19, pp. 5425–5429, 1998, doi: https://doi.org/10.1021/la980557g.

O. Hunderi, “Optics of rough surfaces, discontinuous films and heterogeneous materials,” Surf. Sci., vol. 96, no. 1–3, pp. 1–31, 1980, doi: https://doi.org/10.1016/0039-6028(80)90291-5.

G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission surface‐plasmon resonance (T‐SPR) measurements for monitoring adsorption on ultrathin gold island films,” Chem. Eur. J., vol. 8, no. 17, pp. 3849–3857, 2002, doi: https://doi.org/10.1002/1521-3765(20020902)8:17<3849::AID-CHEM3849>3.0.CO;2-1.

S. A. Maier, Plasmonics: fundamentals and applications, vol. 1. Springer, 2007. [Online]. Available: https://link.springer.com/book/10.1007/0-387-37825-1.

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys., vol. 111, no. 3, pp. 1255–1264, 1999, doi: https://doi.org/10.1063/1.479310.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B, vol. 110, no. 39, pp. 19220–19225, 2006, doi: https://doi.org/10.1021/jp062536y.

S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B, vol. 18, no. 2, p. 674, 1978, doi: https://doi.org/10.1103/PhysRevB.18.674.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter, vol. 29, no. 20, p. 203002, 2017, doi: 10.1088/1361-648X/aa60f3.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” The Journal of Physical Chemistry B, vol. 107, no. 3. ACS Publications, pp. 668–677, 2003. doi: https://doi.org/10.1021/jp026731y.

I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin gold island films on silanized glass. Morphology and optical properties,” Chem. Mater., vol. 16, no. 18, pp. 3476–3483, 2004, doi: https://doi.org/10.1021/cm049605a.

R. H. Doremus, “Optical properties of thin metallic films in island form,” J. Appl. Phys., vol. 37, no. 7, pp. 2775–2781, 1966, doi: https://doi.org/10.1063/1.1782121.

AFM image of Au nanofilm layer deposited at 10-second sputtering time

Downloads

Published

2024-03-31

How to Cite

Sabah Jameel Mezher, Mohammed O. Dawood, & Bahjat B. Kadhim. (2024). Optical Observations of Sputtered Au-nanostructures and Characterizations. Journal of Techniques, 6(1), 93–102. https://doi.org/10.51173/jt.v6i1.1418

Issue

Section

Engineering