Compare Some Classification Methods for COVID-19 Identification with Application
DOI:
https://doi.org/10.51173/jt.v4i4.614Keywords:
Medical Image, COVID-19 Detection, BRISK, HARRIS, Imaging Features, Probability Density FunctionAbstract
The continuous increase in new cases of COVID-19 worldwide and the potential for disease outbreaks require new tools to assist health professionals in early diagnosis and monitoring of patients. Suffer from sources of noise that you were exposed to during filming or treatment. This paper presents a technique for diagnosing the (Covid-19) virus through deep learning and the use of classification techniques and its use to treat and try to identify the infection or not. Where 2000 photos of infected and non-infected COVID-19 were taken and the (BRISK، HARRIS) Probability density function (PDF) method was applied for the purpose of extracting image features، finding and preserving image qualities pure to extract image features، find and preservextract the affected from the unaffected، as well as exclude other relevant influences، and the results can be compared using other methods such as large binary models and hybrid models.
Downloads
References
L. Shapiro، Computer vision and image processing. Academic Press، 1992.
R. Jain، R. Kasturi، and B. G. Schunck، Machine vision. McGraw-hill New York، 1995.
R. C. González، "REW Digital Image Processing،" ed: Prentice Hall، 2008.
W. Burger، M. J. Burge، M. J. Burge، and M. J. Burge، Principles of digital image processing. Springer، 2009.
W. Burger and M. J. Burge، "Digital images،" in Digital Image Processing: Springer، 2016، pp. 1-21.
G. Dougherty “Digital Image Processing for Medical Applications،” second ed.، Cambridge university press، (2010)
Hasinoff، Samuel W. "Photon، Poisson Noise." (2014): 608-610.
Kassam، Saleem A. Signal detection in non-Gaussian noise. Springer Science & Business Media، 2012.
Leutenegger، Stefan، Margarita Chli، and Roland Y. Siegwart. "BRISK: Binary robust invariant scalable keypoints." 2011 International conference on computer vision. Ieee، 2011.
E Heba Ahmed، Nourhan Mohamed Zayed، and Mahmoud Abdelmoneim Fakhreldein. "Feature extraction techniques: fundamental concepts and survey." Handbook of research on emerging perspectives in intelligent pattern recognition، analysis، and image processing. IGI Global، 2016. 264-294
Kale، Pranoti، and K. R. Singh. "A Technical Analysis of Image Stitching Algorithm Using Different Corner Detection Method." International Journal of Innovative Research in Computer and Communication Engineering 3.4 (2015).
Derpanis، Konstantinos G. "The harris corner detector." York University 2 (2004).
M، William، Robert J. Beaver، and Barbara M. Beaver. Introduction to probability and statistics. Cengage Learning، 2012.
Kumar، Suresh، et al. "Performance comparison of median and wiener filter in image de-noising." International Journal of Computer Applications 12.4 (2010): 27-31.
Forshult، Stig E. "Magnetic Resonance Imaging–MRI–An Overview." (2007).
A. D.، Dongare، R. R. Kharde، and Amit D. Kachare. "Introduction to the artificial neural network." International Journal of Engineering and Innovative Technology (IJEIT) 2.1 (2012): 189-194.
Yuwono، Bambang. "Image Smoothing Menggunakan Mean Filtering، Median Filtering، Modus Filtering dan Gaussian Filtering." Telematika: Jurnal Informatika dan Teknologi Informasi 7.1 (2015).
Peng، Zhiyong، Jun Wu، and Guoliang Fan. "CCDA: a concise corner detection algorithm." Machine Vision and Applications 30.6 (2019): 1029-1040.
Kukreja، Harsh، et al. "An introduction to the artificial neural network." Int J Adv Res Innov Ideas Educ 1 (2016): 27-30.
Yamashita، Rikiya، et al. "Convolutional neural networks: an overview and application in radiology." Insights into imaging 9.4 (2018): 611-629.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Rusul Mustafa Ismaiel, Waleed Abdullah Araheemah
This work is licensed under a Creative Commons Attribution 4.0 International License.