Optical Sensor Implementation for Health Care Monitoring Based on Optical Fiber Technology: A Review

Authors

  • Nadia Ahmad Mohamad Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq.
  • Ali Al-Askery Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq.
  • Adnan Hussein Ali Institute of Technology / Baghdad, Middle Technical University, Baghdad, Iraq
  • Safiye Ghasemi Sepidan Branch, Islamic Azad University, Sepidan, Iran

DOI:

https://doi.org/10.51173/jt.v5i4.1770

Keywords:

Dispersive Sensor Systems, Health Care Monitoring, Optical Fiber Sensors, Temperature, Humidity

Abstract

This study provides a review of the literature and an overview of optical fibers, as it is considered the highest class of intelligent materials, and there are many varieties and divisions based on the requirements of the manufacturer, it will review Optic Fiber Sensors (OFS) for measuring temperature and humidity. It has been divided into four main sections: The end user, and the environment. OFS Application in Healthcare, Impact OFS Qatar, Effect of chemical and mechanical properties of OFS Effect of external temperature changes in Surface Plasmon Resonance (SPR) for OFS Due to its unique characteristics, such as small size, lack of electromagnetic interference, high sensitivity, weights that allow sensing, accuracy, and very high dynamic range, it generates a fiber-optic sensor that is easy to manufacture and operate at the lowest possible cost. In addition, the development of Dispersive Sensor Systems (DSS) and OFS has found applications in both healthcare settings and strategies in biomedical research and structural Health Care Monitoring (HCM) to enhance the adoption of fiber-based medical equipment. Optics are two areas in which OFS has yet to realize its huge potential fully. The most recent published studies (2010-2023) were our main focus except for a few cases.

Downloads

Download data is not yet available.

Author Biographies

Nadia Ahmad Mohamad, Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq.

Department of Medical Instrumentation Techniques Engineering

Ali Al-Askery, Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq.

Department of Medical Instrumentation Techniques Engineering

Adnan Hussein Ali , Institute of Technology / Baghdad, Middle Technical University, Baghdad, Iraq

     

Safiye Ghasemi, Sepidan Branch, Islamic Azad University, Sepidan, Iran

Department of Computer Engineering

References

Heijmans, J., Cheng, L., and Wieringa, F.: ‘Optical fiber sensors for medical applications—Practical engineering considerations’, in Editor (Ed.)^(Eds.): ‘Book Optical fiber sensors for medical applications—Practical engineering considerations’ (Springer, 2009, ed.), pp. 2330-2334.doi: 10.1007/978-3-540-89208-3_559.

Alwis, L., Sun, T., and Grattan, K.: ‘Developments in optical fiber sensors for industrial applications’, Optics & Laser Technology, 2016, 78, pp. 62-66. https://doi.org/10.1016/j.optlastec.2015.09.004.

Zhao, Y., Tong, R.-j., Xia, F., and Peng, Y.: ‘Current status of optical fiber biosensor based on surface plasmon resonance’, Biosensors and Bioelectronics, 2019, 142, pp. 111505. https://doi.org/10.1016/j.bios.2019.111505.

Haider, F., Aoni, R.A., Ahmed, R., Mahdiraji, G.A., Azman, M.F., and Adikan, F.R.M.: ‘Mode-multiplex plasmonic sensor for multi-analyte detection’, Optics Letters, 2020, 45, (14), pp. 3945-3948. https://doi.org/10.1364/OL.396340.

Leitão, C., Leal-Junior, A., Almeida, A.R., Pereira, S.O., Costa, F.M., Pinto, J.L., and Marques, C.: ‘Cortisol AuPd plasmonic unclad POF biosensor’, Biotechnology Reports, 2021, 29, pp. e00587. https://doi.org/10.1016/j.btre.2021.e00587.

Liu, C., Wang, J., Wang, F., Su, W., Yang, L., Lv, J., Fu, G., Li, X., Liu, Q., and Sun, T.: ‘Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings’, Optics Communications, 2020, 464, pp. 125496. https://doi.org/10.1016/j.optcom.2020.125496.

Lin, H.-Y., Huang, C.-H., Cheng, G.-L., Chen, N.-K., and Chui, H.-C.: ‘Tapered optical fiber sensor based on localized surface plasmon resonance’, Optics Express, 2012, 20, (19), pp. 21693-21701. https://doi.org/10.1364/OE.20.021693.

Correia, R., James, S., Lee, S., Morgan, S., and Korposh, S.: ‘Biomedical application of optical fiber sensors’, Journal of Optics, 2018, 20, (7), pp. 073003. DOI 10.1088/2040-8986/aac68d.

Wang, S.-n., Lv, R.-q., Zhao, Y., and Qian, J.-k.: ‘A Mach-Zehnder interferometer-based High Sensitivity Temperature sensor for human body monitoring’, Optical Fiber Technology, 2018, 45, pp. 93-97. https://doi.org/10.1016/j.yofte.2018.07.001.

Ahmed, D.S., Ali, A.H., Kadhim, S.A., and Fandi, S.K.: ‘Design and Implementation of the Temperature Sensor for Health Care Monitoring Based on Optical Fiber Technology’, Engineering and Technology Journal, 2021, 39, (10), pp. 1583-1587. http://doi.org/10.30684/etj.v39i10.2170.

Ahn, S., Lee, G.H., Lee, J.-Y., Kim, Y., Kim, M.S., Pagidi, S., Choi, B.K., Kim, J.S., Kim, J.-H., and Jeon, M.Y.: ‘Fiber-Optic Temperature Sensor Using Cholesteric Liquid Crystals on the Optical Fiber Ferrules’, Sensors, 2022, 22, (15), pp. 5752. https://doi.org/10.3390/s22155752.

Sharif, A.: ‘Humidity Sensor Using Optical Loop Fiber’, Journal Fotonik, 2022, 3, (1), pp. 17-25.

Hromadka, J., Hazlan, N.N.M., Hernandez, F.U., Correia, R., Norris, A., Morgan, S.P., and Korposh, S.: ‘Simultaneous in situ temperature and relative humidity monitoring in mechanical ventilators using an array of functionalised optical fiber long period grating sensors’, Sensors and Actuators B: Chemical, 2019, 286, pp. 306-314. https://doi.org/10.1016/j.snb.2019.01.124.

Liu, L., Korposh, S., Gomez, D., Correia, R., Hayes-Gill, B.R., and Morgan, S.P.: ‘Localised plasmonic hybridisation mode optical fibre sensing of relative humidity’, Sensors and Actuators B: Chemical, 2022, 353, pp. 131157. https://doi.org/10.1016/j.snb.2021.131157.

Li, M., Singh, R., Marques, C., Zhang, B., and Kumar, S.: ‘2D material assisted SMF-MCF-MMF-SMF based LSPR sensor for creatinine detection’, Optics Express, 2021, 29, (23), pp. 38150-38167. https://doi.org/10.1364/OE.445555.

He, C., Korposh, S., Correia, R., Liu, L., Hayes-Gill, B.R., and Morgan, S.P.: ‘Optical fiber sensor for simultaneous temperature and relative humidity measurement: Towards absolute humidity evaluation’, Sensors and Actuators B: Chemical, 2021, 344, pp. 130154. https://doi.org/10.1016/j.snb.2021.130154.

Leal-Junior, A., Frizera-Neto, A., Marques, C., and Pontes, M.J.: ‘Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect’, Sensors, 2018, 18, (3), pp. 916. https://doi.org/10.3390/s18030916.

Chen, S., Han, X., Hong, P., Zhang, Y., Yin, X., and He, B.: ‘A flexible temperature sensor for noncontact human-machine interaction’, Materials, 2021, 14, (23), pp. 7112. https://doi.org/10.3390/ma14237112.

Leal-Junior, A., Frizera, A., Marques, C., and Pontes, M.J.: ‘Polymer-optical-fiber-based sensor system for simultaneous measurement of angle and temperature’, Applied Optics, 2018, 57, (7), pp. 1717-1723. https://doi.org/10.1364/AO.57.001717.

Mathew, J., Semenova, Y., and Farrell, G.: ‘Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer’, IEEE Journal of Selected Topics in Quantum Electronics, 2011, 18, (5), pp. 1553-1559. DOI: 10.1109/JSTQE.2011.2182337.

Coyle, S., Lau, K.-T., Moyna, N., O'Gorman, D., Diamond, D., Di Francesco, F., Costanzo, D., Salvo, P., Trivella, M.G., and De Rossi, D.E.: ‘BIOTEX—Biosensing textiles for personalised healthcare management’, IEEE transactions on information technology in biomedicine, 2010, 14, (2), pp. 364-370. DOI: 10.1109/TITB.2009.2038484.

Li, B., Yan, X., Zhang, X., Wang, F., Li, S., Suzuki, T., Ohishi, Y., and Cheng, T.: ‘No-core optical fiber sensor based on surface plasmon resonance for glucose solution concentration and temperature measurement’, Optics Express, 2021, 29, (9), pp. 12930-12940. https://doi.org/10.1364/OE.423307.

Wang, Y., Zhu, X., Chen, H., Jiang, C., Guo, X., and Sun, S.: ‘Relative humidity sensor based on cascaded Fabry-Perot interferometers and Vernier effect’, Optik, 2022, 254, pp. 168605. https://doi.org/10.1016/j.ijleo.2022.168605.

Liang, L., Sun, H., Liu, N., Luo, H., Gang, T., Rong, Q., Qiao, X., and Hu, M.: ‘High-sensitivity optical fiber relative humidity probe with temperature calibration ability’, Applied Optics, 2018, 57, (4), pp. 872-876. https://doi.org/10.1364/AO.57.000872.

Du, B., Yang, D., She, X., Yuan, Y., Mao, D., Jiang, Y., and Lu, F.: ‘MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery’, Sensors and Actuators B: Chemical, 2017, 251, pp. 180-184. https://doi.org/10.1016/j.snb.2017.04.193.

Chu, C.-S., and Lin, C.-A.: ‘Optical fiber sensor for dual sensing of temperature and oxygen based on PtTFPP/CF embedded in sol–gel matrix’, Sensors and Actuators B: Chemical, 2014, 195, pp. 259-265. https://doi.org/10.1016/j.snb.2014.01.032.

Yan, G., Liang, Y., Lee, E.-H., and He, S.: ‘Novel Knob-integrated fiber Bragg grating sensor with polyvinyl alcohol coating for simultaneous relative humidity and temperature measurement’, Optics Express, 2015, 23, (12), pp. 15624-15634. https://doi.org/10.1364/OE.23.015624.

Wu, S., Tan, Q., Forsberg, E., Hu, S., and He, S.: ‘In-situ dual-channel surface plasmon resonance fiber sensor for temperature-compensated detection of glucose concentration’, Optics Express, 2020, 28, (14), pp. 21046-21061. https://doi.org/10.1364/OE.395524.

Gong, P., Wang, Y., Zhou, X., Wang, S., Zhang, Y., Zhao, Y., Nguyen, L.V., Ebendorff-Heidepriem, H., Peng, L., and Warren-Smith, S.C.: ‘In situ temperature-compensated DNA hybridization detection using a dual-channel optical fiber sensor’, Analytical Chemistry, 2021, 93, (30), pp. 10561-10567. https://doi.org/10.1021/acs.analchem.1c01660.

Khashin, S.L., Mohammed, S.A., and Taher, H.J.: ‘Highly sensitive fiber optic humidity sensor based on polyvinyl alcohol Fabry–Perot’, Optics Continuum, 2022, 1, (11), pp. 2308-2318. https://doi.org/10.1364/OPTCON.456418.

Zhong, Y., Xu, P., Yang, J., and Dong, X.: ‘Optical Fiber Interferometric Humidity Sensor by Using Hollow Core Fiber Interacting with Gelatin Film’, Sensors, 2022, 22, (12), pp. 4514. https://doi.org/10.3390/s22124514.

Hernandez, F.U., Morgan, S.P., Hayes-Gill, B.R., Harvey, D., Kinnear, W., Norris, A., Evans, D., Hardman, J.G., and Korposh, S.: ‘Characterization and use of a fiber optic sensor based on PAH/SiO 2 film for humidity sensing in ventilator care equipment’, IEEE Transactions on Biomedical Engineering, 2016, 63, (9), pp. 1985-1992. DOI: 10.1109/TBME.2016.2521662.

Shao, M., Sun, H., Liang, J., Han, L., and Feng, D.: ‘In-fiber Michelson interferometer in photonic crystal fiber for humidity measurement’, IEEE Sensors Journal, 2020, 21, (2), pp. 1561-1567. DOI: 10.1109/JSEN.2020.3019717.

Wang, F., Zhang, L., Ma, T., Wang, X., Yu, K., and Liu, Y.: ‘A high-sensitivity sensor based on tapered dispersion compensation fiber for curvature and temperature measurement’, Optics Communications, 2021, 481, pp. 126534. https://doi.org/10.1016/j.optcom.2020.126534.

Xiao, S., Wu, B., Sun, C., Wang, Z., and Jiang, Y.: ‘Strain and Temperature Discrimination Based on a Mach-Zehnder Interferometer with Cascaded Single Mode Fibers’, Photonic Sensors, 2023, 13, (1), pp. 1-9.

Yang, J., Guan, C., Yu, Z., Yang, M., Shi, J., Wang, P., Yang, J., and Yuan, L.: ‘High sensitivity humidity sensor based on gelatin coated side-polished in-fiber directional coupler’, Sensors and Actuators B: Chemical, 2020, 305, pp. 127555. https://doi.org/10.1016/j.snb.2019.127555.

Kim, H.-M., Jeong, D.H., Lee, H.-Y., Park, J.-H., and Lee, S.-K.: ‘Design and validation of fiber optic localized surface plasmon resonance sensor for thyroglobulin immunoassay with high sensitivity and rapid detection’, Scientific reports, 2021, 11, (1), pp. 1-9. https://doi.org/10.1038/s41598-021-95375-y.

Gu, S., Sun, W., Li, M., Li, Z., Nan, X., Feng, Z., and Deng, M.: ‘Simultaneous measurement of magnetic field and temperature based on photonic crystal fiber plasmonic sensor with dual-polarized modes’, Optik, 2022, 259, pp. 169030. https://doi.org/10.1016/j.ijleo.2022.169030.

He, C., Liu, L., Korposh, S., Correia, R., and Morgan, S.P.: ‘Volatile organic compound vapour measurements using a localised surface plasmon resonance optical fiber sensor decorated with a metal-organic framework’, Sensors, 2021, 21, (4), pp. 1420. https://doi.org/10.3390/s21041420.

Wang, J.-K., Ying, Y., Hu, N., and Cheng, S.-Y.: ‘Double D-shaped optical fiber temperature and humidity sensor based on ethanol and polyvinyl alcohol’, Optik, 2021, 242, pp. 166972. https://doi.org/10.1016/j.ijleo.2021.166972.

Mohammed J. Sadiq, Mohammed J. Zaiter, & Raad F. Chisab. (2022). Energy Efficient Waveband Translucent Optical Burst Switching Network. Journal of Techniques, 4(4), 71–79. https://doi.org/10.51173/jt.v4i4.776.

Zhou, X., Li, S., Li, X., Yan, X., Zhang, X., Wang, F., and Cheng, T.: ‘High-sensitivity SPR temperature sensor based on hollow-core fiber’, IEEE Transactions on Instrumentation and Measurement, 2020, 69, (10), pp. 8494-8499. - DOI: 10.1109/TIM.2020.2992828.

A tapered optical fiber's structure is depicted schematically

Downloads

Published

2023-12-31

How to Cite

Nadia Ahmad Mohamad, Al-Askery, A., Hussein Ali , A., & Ghasemi, S. G. (2023). Optical Sensor Implementation for Health Care Monitoring Based on Optical Fiber Technology: A Review. Journal of Techniques, 5(4), 65–76. https://doi.org/10.51173/jt.v5i4.1770

Issue

Section

Engineering

Similar Articles

<< < 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.