Influence of Ag2O Nanoparticles on the Ammonia Gas Sensing Properties of CNT/P3HT Composite Films
DOI:
https://doi.org/10.51173/jt.v6i4.2577Keywords:
Nanoparticles, Ammonia Gas Sensing, Composite Films, P3HT, Carbon NanotubeAbstract
In this research, the CNT/P3HT and CNT/P3HT@Ag2O composite films were prepared to be utilized as the ammonia gas sensor. Moreover, the impact of the synthesized composites on ammonia gas sensing and the effect of Ag2O nanoparticles on the properties of the composites were examined. The layers were analyzed using XRD, AFM, FTIR, and gas sensing analysis, providing insights into their potential for improving ammonia gas sensing. Despite changes in the P3HT to CNT ratios, the XRD analysis of the CNT/P3HT and CNT/P3HT@Ag2O composite films revealed the same structural properties for the carbon nanotubes. In accordance with the data obtained from the FTIR test of the composite films, characteristic P3HT bands and various functional groups were detected. As the gas sensing analysis indicated, the sensitivity increased with the increasing ratio of P3HT to CNT, and the highest sensitivity was achieved by the CNT/P3HT (0.7) sensor. Moreover, the addition of silver oxide further increased the sensitivity. These results suggest that the CNT/P3HT@Ag2O film sensor is highly sensitive to ammonia gas and can be a promising sensor for the detection of ammonia gas.
Downloads
References
Khanh, T. S. T., Trung, T. Q., Giang, L. T. T., Nguyen, T. Q., Lam, N. D., & Dinh, N. N. Ammonia gas sensing characteristic of P3HT-rGO-MWCNT composite films. Applied Sciences, 11(15), 6675, 2021. https://doi.org/10.3390/app11156675.
Han, S., Zhuang, X., Shi, W., Yang, X., Li, L., & Yu, J. Poly (3-hexylthiophene)/polystyrene (P3HT/PS) blends based organic field-effect transistor ammonia gas sensor. Sensors and Actuators B: Chemical, 225, 10-15, 2016. https://doi.org/10.1016/j.snb.2015.11.005.
Lam, M. L., Nguyen, N. D., & Tran, Q. T. Characterization of NH3 sensing properties of P3HT+ rGO+ CNT composite films made by spin-coating. Communications in Physics, 28(4), 369-377, 2018. https://doi.org/10.15625/0868-3166/28/4/12683.
Seekaew, Y., Pon-On, W., & Wongchoosuk, C. Ultrahigh selective room-temperature ammonia gas sensor based on tin–titanium dioxide/reduced graphene/carbon nanotube nanocomposites by the solvothermal method. ACS omega, 4(16), 16916-16924, 2019. https://doi.org/10.1021/acsomega.9b02185.
Su, P. G., & Yang, L. Y. NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature. Sensors and Actuators B: Chemical, 223, 202-208, 2016. https://doi.org/10.1016/j.snb.2015.09.091.
Armitage, B. I., Murugappan, K., Lefferts, M. J., Cowsik, A., & Castell, M. R. Conducting polymer percolation gas sensor on a flexible substrate. Journal of Materials Chemistry C, 8(36), 12669-12676, 2020. https://doi.org/10.1039/D0TC02856H.
Murugappan, K., & Castell, M. R. Bridging electrode gaps with conducting polymers around the electrical percolation threshold. Electrochemistry Communications, 87, 40-43, 2018. https://doi.org/10.1016/j.elecom.2017.12.019.
Pang, Z., Yildirim, E., Pasquinelli, M. A., & Wei, Q. Ammonia sensing performance of polyaniline-coated polyamide 6 nanofibers. ACS omega, 6(13), 8950-8957, 2021. https://doi.org/10.1021/acsomega.0c06272.
Mkhize, N., Murugappan, K., Castell, M. R., & Bhaskaran, H. Electrohydrodynamic jet printed conducting polymer for enhanced chemiresistive gas sensors. Journal of Materials Chemistry C, 9(13), 4591-4596, 2021. https://doi.org/10.1039/D0TC05719C.
Cheng, S., Wang, Y., Zhang, R., Wang, H., Sun, C., & Wang, T. Recent Progress in Gas Sensors Based on P3HT Polymer Field-Effect Transistors. Sensors, 23(19), 8309, 2023. https://doi.org/10.3390/s23198309.
Kuo, C. G., Chen, J. H., Chao, Y. C., & Chen, P. L. Fabrication of a P3HT-ZnO nanowires gas sensor detecting ammonia gas. Sensors, 18(1), 37, 2017. https://doi.org/10.3390/s18010037.
Duong, D. T., Wang, C., Antono, E., Toney, M. F., & Salleo, A. The chemical and structural origin of efficient p-type doping in P3HT. Organic Electronics, 14(5), 1330-1336, 2013. https://doi.org/10.1016/j.orgel.2013.02.028.
Wang, W., Chen, C., Tollan, C., Yang, F., Qin, Y., & Knez, M. Efficient and controllable vapor to solid doping of the polythiophene P3HT by low temperature vapor phase infiltration. Journal of Materials Chemistry C, 5(10), 2686-2694, 2017. https://doi.org/10.1039/C6TC05544C.
Li, G., Zhu, R., & Yang, Y. Polymer solar cells. Nature photonics, 6(3), 153-161, 2012. https://doi.org/10.1038/nphoton.2012.11.
Park, Y. D., Cho, J. H., Kim, D. H., Jang, Y., Lee, H. S., Ihm, K., & Cho, K. Energy-level alignment at interfaces between gold and poly (3-hexylthiophene) films with two different molecular structures. Electrochemical and solid-state letters, 9(11), G317, 2006. https://doi.org/10.1149/1.2337862.
Karthik, P., Ravichandran, S., Sasikala, V., Prakash, N., Mukkannan, A., & Rajesh, J. Effective photodegradation of organic water pollutants by the facile synthesis of Ag2O nanoparticles. Surfaces and Interfaces, 10, 3088, 2023. https://doi.org/10.1016/j.surfin.2023.103088.
E Sultan, A., I Abdullah, H., & H Niama, A. Synthesis of Silver Oxide Nanoparticles using Different Precursor and Study Cytotoxicity Against MCF-7 Breast Cancer Cell line. Nanomedicine Research Journal, 8(3), 259-267, 2023. https://doi.org/10.22034/nmrj.2023.03.004.
Shume, W. M., Murthy, H. A., & Zereffa, E. A. A review on synthesis and characterization of Ag2O nanoparticles for photocatalytic applications. Journal of Chemistry, 1, 15, 2020. https://doi.org/10.1155/2020/5039479
De Freitas, J.N., Maubane, M.S., Bepete, G., van Otterlo, W.A., Coville, N.J. & Nogueira, A.F. Synthesis and characterization of single wall carbon nanotube-grafted poly (3-hexylthiophene) and their nanocomposites with gold nanoparticles. Synthetic metals, 176, 55-64, 2013. https://doi.org/10.1016/j.synthmet.2013.05.026.
Keru, G., Ndungu, P. G., Mola, G. T., & Nyamori, V. O. Bulk heterojunction solar cell with nitrogen-doped carbon nanotubes in the active layer: effect of nanocomposite synthesis technique on photovoltaic properties. Materials, 8(5), 2415-2432, 2015. https://doi.org/10.3390/ma8052415.
Hernández-Martínez, D., Nicho, M. E., Alvarado-Tenorio, G., García-Carvajal, S., Castillo-Ortega, M. M., & Vásquez-López, C. Elaboration and characterization of P3HT–PEO–SWCNT fibers using the electrospinning technique. SN Applied Sciences, 2, 1-9, 2020. https://doi.org/10.1007/s42452-020-2278-2.
López-Mata, C., Nicho, M. E., Altuzar-Coello, P., del Angel-Meraz, E., García-Escobar, C. H., & Cadenas-Pliego, G. Synthesis and characterization of SWNTs/P3OT composites through in situ microwave-assisted polymerization. Journal of Materials Science: Materials in Electronics, 26, 7341-7350, 2015. https://doi.org/10.1007/s10854-015-3363-y.
Mahakul, P. C., & Mahanandia, P. Structural and electrical characteristics of solution processed P3HT-carbon nanotube composite. In IOP Conference Series: Materials Science and Engineering 178 (1), 012024, 2017. IOP Publishing. https://doi.org/10.1088/1757-899X/178/1/012024.
Musumeci, A. W., Silva, G. G., Liu, J. W., Martens, W. N., & Waclawik, E. R. Structure and conductivity of multi-walled carbon nanotube/poly (3-hexylthiophene) composite films. Polymer, 48(6), 1667-1678, 2007. https://doi.org/10.1016/j.polymer.2007.01.027
Giulianini, M., Waclawik, E. R., Bell, J. M., Scarselli, M., Castrucci, P., De Crescenzi, M., & Motta, N. Microscopic and spectroscopic investigation of poly (3-hexylthiophene) interaction with carbon nanotubes. Polymers, 3(3), 1433-1446, 2011. https://doi.org/10.3390/polym3031433.
O'Connell, M. J., Boul, P., Ericson, L. M., Huffman, C., Wang, Y., Haroz, E., ... & Smalley, R. E. Reversible water-solubilization of single-walled carbon nanotubes through polymer wrapping. Chemical physics letters, 342(3-4), 265-271, 2001. https://doi.org/10.1016/S0009-2614(01)00490-0.
Giulianini, M., Waclawik, E. R., Bell, J. M., De Crescenzi, M., Castrucci, P., Scarselli, M., & Motta, N. Regioregular poly (3-hexyl-thiophene) helical self-organization on carbon nanotubes. Applied Physics Letters, 95(1), 20-31, 2009. https://doi.org/10.1063/1.3173825.
Tiwari, D.C., Atri, P. & Sharma, R. Sensitive detection of ammonia using reduced graphene oxide/polypyrrole nanocomposites. Synthetic Metals, 203, 228-234, 2015. https://doi.org/10.1016/j.synthmet.2015.02.026.
Yan, K., Toku, Y., Morita, Y. & Ju, Y. Fabrication of a multiwall carbon nanotube sheet-based hydrogen sensor on a stacking multi-layer structure. Nanotechnology, 29, 375503, 2018. DOI: 10.1088/1361-6528/aace96.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Haydar Abdulmeer Abbas , Wissem Cheikhrouhou-Koubaa
This work is licensed under a Creative Commons Attribution 4.0 International License.