Image-Based Face Recognition Techniques Used in Disease Detection Approaches: A Survey
DOI:
https://doi.org/10.51173/jt.v6i1.1966Keywords:
Face Recognition, Disease Detection, Artificial Intelligence, Convolutional Neural Network, Face DisordersAbstract
Facial diseases lead to noticeable changes on the human face, and some of them extend beyond internal effects or organ-based disorders. Indeed, certain types of facial diseases result in visually noticeable abnormalities on the human face. These alterations in facial patterns can serve as potential indicators for corresponding diseases, particularly in the fields of endocrinology and metabolism, Muscles-Nervous disorders, Chromosomes, and Genetic disorders, among others. Technologies used in Face Recognition (FR) have been developed over the past few decades; however, only a limited amount of research has been applied in recent years to FR-based disease detection for clinical purposes. FR applications relying on Artificial Neural Network (ANN) techniques have recorded higher accuracy rates in diagnosing facial diseases. This field of recognition holds promising potential for optimizing facial diagnosis approaches and supporting medical staff in evaluating detections. In practice, only a few research ideas have been translated into medical products, emphasizing the need to identify and integrate future applications. As a primary focus, this paper centers on the key applications and technologies for detecting various types of facial diseases, along with a discussion of prospects.
Downloads
References
Naji, Maitham Ali, Ghalib Ahmed Salman, and Jasim Fadhil Muthna. "Face recognition using selected topographical features." International Journal of Electrical and Computer Engineering 10(5), 4695, 2020, DOI: 10.11591/ijece.v10i5.
Kaur, Paramjit, et al. "Facial-recognition algorithms: A literature review." Medicine, Science and the Law, 60(2), 131-139, 2020, https://doi.org/10.1177/0025802419893168.
Kosilek, R.P.; Frohner, R.; Würtz, R.P.; Berr, C.M.; Schopohl, J.; Reincke, M.; Schneider, H.J. Diagnostic Use of Facial ImageAnalysis Software in Endocrine and Genetic Disorders: Review, Current Results and Future Perspectives. Eur. J. Endocrinol. 173, M39–M44, 2015, DOI:10.1530/EJE-15-0429.
Ali, M.R.; Myers, T.;Wagner, E.; Ratnu, H.; Dorsey, E.R.; Hoque, E. Facial Expressions Can Detect Parkinson’s Disease: Preliminary Evidence from Videos Collected Online. NPJ Digit. Med. 2021, 4, 1–4. https://doi. org/10.1038/s41746-021-00502-8 PMID: 34480109.
Gurovich, Y.; Hanani, Y.; Bar, O.; Nadav, G.; Fleischer, N.; Gelbman, D.; Basel-Salmon, L.; Krawitz, P.M.; Kamphausen, S.B.; Zenker, M.; et al. Identifying Facial Phenotypes of enetic Disorders Using Deep Learning. Nat. Med. 2019, 25, 60–64. https://doi.org/10.1038/s41591-018-0279-0.
Loos, H.S.; Wieczorek, D.; Würtz, R.P.; von der Malsburg, C.; Horsthemke, B. Computer-Based Recognition of Dysmorphic Faces.Eur. J. Hum. Genet, 11, 555–560, 2003, https://doi.org/10.1038/sj.ejhg.5200997.
Wachtman, G.S.; Cohn, J.F.; VanSwearingen, J.M.; Manders, E.K. Automated Tracking of Facial Features in Patients with Facial Neuromuscular Dysfunction. Plast. Reconstr. Surg. 2001, 107, 1124–1133.
Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in Health and Medicine. Nat. Med. 2022, 28, 31–38. https://doi.org/10.1038/s41591-021-01614-0.
10. Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial Intelligence in Healthcare. Nat. Biomed. Eng. 2018, 2, 19–731. https://doi.org/10.1038/s41551-018-0305-z.
Meng, T.; Guo, X.; Lian,W.; Deng, K.; Gao, L.;Wang, Z.; Huang, J.;Wang, X.; Long, X.; Xing, B. Identifying Facial Features and Predicting Patients of Acromegaly Using Three-Dimensional Imaging Techniques and Machine Learning. Front. Endocrinol. 2020, 11, 492. https://doi.org/10.3389/fendo.2020.00492.
Ridha, A.M.; Shehieb,W.; Yacoub, P.; Al-Balawneh, K.; Arshad, K. Smart Prediction System for Facial Paralysis. In Proceedings of the 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, 14–16 April 2020; pp. 321–327. DOI: 10.1109/ICEEE49618.2020.9102600.
Anwarul, S.; Dahiya, S. A Comprehensive Review on Face Recognition Methods and Factors Affecting Facial Recognition Accuracy. In Proceedings of the ICRIC 2019, Recent Innovations in Computing, Jammu, India, 8–9 March 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 495–514. https://doi.org/10.1007/978-3-030-29407-6_36.
Song,W.; Lei, Y.; Chen, S.; Pan, Z.; Yang, J.-J.; Pan, H.; Du, X.; Cai,W.;Wang, Q. Multiple Facial Image Features-Based Recognition for the Automatic Diagnosis of Turner Syndrome. Comput. Ind. 2018, 100, 85–95. https://doi.org/10.1016/j.compind.2018.03.021.
. Hong, D.; Zheng, Y.-Y.; Xin, Y.; Sun, L.; Yang, H.; Lin, M.-Y.; Liu, C.; Li, B.-N.; Zhang, Z.-W.; Zhuang, J.; et al. Genetic Syndromes Screening by Facial Recognition Technology: VGG-16 Screening Model Construction and Evaluation. Orphanet. J. Rare Dis. 2021,16, 344. https://doi.org/10.1186/s13023-021-01979-y.
Jayaraman, U.; Gupta, P.; Gupta, S.; Arora, G.; Tiwari, K. Recent Development in Face Recognition. Neurocomputing 2020,408, 231–245. https://doi.org/10.1016/j.neucom.2019.08.110.
Wang, Xin, et al. "Gan-generated faces detection: A survey and new perspectives." arXiv preprint arXiv:2202.07145, 2022. https://doi.org/10.48550/arXiv.2202.07145.
Banerjee, D.; Yu, K. Robotic Arm-Based Face Recognition Software Test Automation. IEEE Access 2018, 6, 37858–37868. DOI: 10.1109/ACCESS.2018.2854754.
AbdAlmageed, W.; Mirzaalian, H.; Guo, X.; Randolph, L.M.; Tanawattanacharoen, V.K.; Geffner, M.E.; Ross, H.M.; Kim, M.S. Assessment of Facial Morphologic Features in Patients With Congenital Adrenal Hyperplasia Using Deep Learning. JAMA Netw. Open 2020, 3, e2022199. doi:10.1001/jamanetworkopen.2020.22199.
Bayoudh, Khaled, Fayçal Hamdaoui, and Abdellatif Mtibaa. "An Attention-based Hybrid 2D/3D CNN-LSTM for Human Action Recognition." 2022 2nd International Conference on Computing and Information Technology (ICCIT). IEEE, 2022. DOI: 10.1109/ICCIT52419.2022.9711631.
Jin, B.; Qu, Y.; Zhang, L.; Gao, Z. Diagnosing Parkinson Disease Through Facial Expression Recognition: Video Analysis. J. Med.Internet Res. 2020, 22, e18697. doi: 10.2196/18697.
Baltrušaitis, T.; Zadeh, A.; Lim, Y.; Morency, L.-P. OpenFace 2.0: Facial Behavior Analysis Toolkit. In Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018. DOI: 10.1109/FG.2018.00019.
Nam, U.; Lee, K.; Ko, H.; Lee, J.-Y.; Lee, E.C. Analyzing Facial and Eye Movements to Screen for Alzheimer’s Disease. Sensors, 20, 5349, 2020, https://doi.org/10.3390/s20185349.
Colao, A.; Grasso, L.F.S.; Giustina, A.; Melmed, S.; Chanson, P.; Pereira, A.M.; Pivonello, R. Acromegaly. Nat. Rev. Dis Primers, 5, 20, 2019.
Savas, Mesut, et al. "Approach to the patient: diagnosis of Cushing syndrome." The Journal of Clinical Endocrinology & Metabolism 107.11 (2022): 3162-3174. https://doi.org/10.1210/clinem/dgac492.
Learned-Miller, E.; Lu, Q.; Paisley, A.; Trainer, P.; Blanz, V.; Dedden, K.; Miller, R. Detecting Acromegaly: Screening for Diseasewith a Morphable Model. Med. Image Comput. Comput. Assist. Interv. 2006, 9, 495–503. https://doi.org/10.1007/11866763_61.
Frohner, R.; Würtz, R.P.; Kosilek, R.; Schne der, H.J. Optimierung Der Gesichtsklassifikation Bei Der Erkennung von Akromegalie. J. Klin. Endokrinol. Stoffw. 2013, 6, 20–24.
Gencturk, B.; Nabiyev, V.V.; Ustubioglu, A.; Ketenci, S. Automated Pre-Diagnosis of Acromegaly Disease Using Local Binary Patterns and Its Variants. In Proceedings of the 36th International Conference on Telecommunications and Signal Processing (TSP), Rome, Italy, 2–4 July 2013; pp. 817–821. DOI: 10.1109/TSP.2013.6614052.
Kong, X.; Gong, S.; Su, L.; Howard, N.; Kong, Y. Automatic Detection of Acromegaly From Facial Photographs Using Machine Learning Methods. EBioMedicine 2018, 27, 94–102. https://doi.org/10.1016/j.ebiom.2017.12.01.
Wei, R.; Jiang, C.; Gao, J.; Xu, P.; Zhang, D.; Sun, Z.; Liu, X.; Deng, K.; Bao, X.; Sun, G.; et al. Deep-Learning Approach to Automatic Identification of Facial Anomalies in Endocrine Disorders. Neuroendocrinology 2020, 110, 328–337. https://doi.org/10.1159/000502211.
Gautam, R.; Sharma, M. Prevalence and Diagnosis of Neurological Disorders Using Different Deep Learning Techniques: A Meta-Analysis. J. Med. Syst. 2020, 44, 49. https://doi.org/10.1007/s10916-019-1519-7.
Wang, B.;Wu, X. Application of Artificial Intelligence in Recognition and Evaluation of Facial Paralysis. Chin. J. Med. Instrum, 46, 57–62, 2022, https://doi.org/10.3969/j.issn.1671-7104.2022.01.012.
Ngo, T.H.; Seo, M.; Matsushiro, N.; Chen, Y.-W. Quantitative Analysis of Facial Paralysis Based on Filters of Concentric Modulation.In Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, 15–17 August 2015; pp. 1758–1763. DOI: 10.1109/FSKD.2015.7382213.
Guo, Z.; Shen, M.; Duan, L.; Zhou, Y.; Xiang, J.; Ding, H.; Chen, S.; Deussen, O.; Dan, G. Deep Assessment Process: Objective Assessment Process for Unilateral Peripheral Facial Paralysis via Deep Convolutional Neural Network. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18–21 April 2017; pp. 135–138. DOI: 10.1109/ISBI.2017.7950486.
Storey, G.; Jiang, R.; Keogh, S.; Bouridane, A.; Li, C.-T. 3DPalsyNet: A Facial Palsy Grading and Motion Recognition Framework Using Fully 3D Convolutional Neural Networks. arXiv 2019, arXiv:1905.13607. DOI: 10.1109/ACCESS.2019.2937285.
Xing, Xin, et al. "Efficient training on Alzheimer’s disease diagnosis with learnable weighted pooling for 3D PET brain image classification." Electronics 12.2 (2023): 467. https://doi.org/10.3390/electronics12020467.
Tau¸tan, A.-M.; Ionescu, B.; Santarnecchi, E. Artificial Intelligence in Neurodegenerative Diseases: A Review of Available Tools with a Focus on Machine Learning Techniques. Artif. Intell. Med. 2021, 117, 102081. https://doi.org/10.1016/j.artmed.2021.102081.
Zhuang, Y.; McDonald, M.; Uribe, O.; Yin, X.; Parikh, D.; Southerland, A.M.; Rohde, G.K. Facial Weakness Analysis and Quantification of Static Images. IEEE J. Biomed. Health Inform. 2020, 24, 2260–2267. DOI: 10.1109/JBHI.2020.2964520.
Bandini, A.; Rezaei, S.; Guarin, D.L.; Kulkarni, M.; Lim, D.; Boulos, M.I.; Zinman, L.; Yunusova, Y.; Taati, B. A New Dataset for Facial Motion Analysis in Individuals With Neurological Disorders. IEEE J. Biomed. Health Inform. 2021, 25, 1111–1119. DOI: 10.1109/JBHI.2020.3019242.
Rajnoha, M.; Mekyska, J.; Burget, R.; Eliasova, I.; Kostalova, M.; Rektorova, I. Towards Identification of Hypomimia in Parkinson’s Disease Based on Face Recognition Methods. In Proceedings of the 2018 10th International Congress on Ultra-Modern Telecommunications and Control Systems and.dWorkshops (ICUMT), Moscow, Russia, 5–9 November 2018; pp. 1–4. DOI: 10.1109/ICUMT.2018.8631249.
Hou, X.; Zhang, Y.;Wang, Y.;Wang, X.; Zhao, J.; Zhu, X.; Su, J. A Markerless 2D Video, Facial Feature Recognition-Based, Artificial Intelligence Model to AssistWith Screening for Parkinson Disease: Development and Usability Study. J. Med. Internet Res. 2021, 23, e29554. doi: 10.2196/29554.
Umeda-Kameyama, Y.; Kameyama, M.; Tanaka, T.; Son, B.-K.; Kojima, T.; Fukasawa, M.; Iizuka, T.; Ogawa, S.; Iijima, K.; Akishita, M. Screening of Alzheimer’s Disease by Facial Complexion Using Artificial Intelligence. Aging 2021, 13, 1765–1772. doi: 10.18632/aging.202545.
Gravholt, Claus H., et al. "The changing face of Turner syndrome." Endocrine reviews, 44(1), 33-69. The changing face of Turner syndrome, 2023.
Bull, M.J. Down Syndrome. N. Engl. J. Med. 2020, 382, 2344–2352. DOI: 10.1056/NEJMra1706537.
Agbolade, Olalekan, et al. "Down syndrome face recognition: a review." Symmetry 12.7 (2020): 1182. https://doi.org/10.3390/sym12071182.
Zhao, Q.; Okada, K.; Rosenbaum, K.; Kehoe, L.; Zand, D.J.; Sze, R.; Summar, M.; Linguraru, M.G. Digital Facial Dysmorphology for Genetic Screening: Hierarchical Constrained Local Model Using ICA. Med. Image Anal. 2014, 18, 699–710. https://doi.org/10.1016/j.media.2014.04.002.
Qin, B.; Liang, L.; Wu, J.; Quan, Q.; Wang, Z.; Li, D. Automatic Identification of Down Syndrome Using Facial Images with Deep Convolutional Neural Network. Diagnostics 2020, 10, 487. https://doi.org/10.3390/diagnostics10070487.
Srisraluang, W.; Rojnueangnit, K. Facial Recognition Accuracy in Photographs of Thai Neonates with Down Syndrome among Physicians and the Face2Gene Application. Am. J. Med. Genet. A 2021, 185, 3701–3705. https://doi.org/10.1002/ajmg.a.62432.
Vorravanpreecha, N.; Lertboonnum, T.; Rodjanadit, R.; Sriplienchan, P.; Rojnueangnit, K. Studying Down Syndrome Recognition Probabilities in Thai Children with De-Identified Computer-Aided Facial Analysis. Am. J. Med. Genet. A 2018, 176, 1935–1940. https://doi.org/10.1002/ajmg.a.40483.
Porras, A.R.; Bramble, M.S.; Mosema Be Amoti, K.; Spencer, D.; Dakande, C.; Manya, H.; Vashist, N.; Likuba, E.; Ebwel, J.M.; Musasa, C.; et al. Facial Analysis Technology for the Detection of Down Syndrome in the Democratic Republic of the Congo. Eur. J. Med. Genet. 64, 104267, 2021, https://doi.org/10.1016/j.ejmg.2021.104267.
Gravholt, C.H.; Viuff, M.H.; Brun, S.; Stochholm, K.; Andersen, N.H. Turner Syndrome: Mechanisms and Management. Nat. Rev. Endocrinol. 2019, 15, 601–614. https://doi.org/10.1038/s41574-019-0224-4.
Pan, Z.; Shen, Z.; Zhu, H.; Bao, Y.; Liang, S.; Wang, S.; Li, X.; Niu, L.; Dong, X.; Shang, X.; et al. Clinical Application of an Automatic Facial Recognition System Based on Deep Learning for Diagnosis of Turner Syndrome. Endocrine 2021, 72, 865–873. https://doi.org/10.1007/s12020-020-02539-3.
Basel-Vanagaite, L.;Wolf, L.; Orin, M.; Larizza, L.; Gervasini, C.; Krantz, I.; Deardoff, M. Recognition of the Cornelia de Lange Syndrome Phenotype with Facial Dysmorphology Novel Analysis. Clin. Genet, 89, 557–563, 2016, https://doi.org/10.1111/cge.12716.
Latorre-Pellicer, A.; Ascaso, Á.; Trujillano, L.; Gil-Salvador, M.; Arnedo, M.; Lucia-Campos, C.; Antoñanzas-Pérez, R.; Marcos-Alcalde, I.; Parenti, I.; Bueno-Lozano, G.; et al. Evaluating Face2Gene as a Tool to Identify Cornelia de Lange Syndrome by Facial Phenotypes. Int. J. Mol. Sci. 2020, 21, 1042. https://doi.org/10.3390/ijms21031042.
Hadj-Rabia, S.; Schneider, H.; Navarro, E.; Klein, O.; Kirby, N.; Huttner, K.; Wolf, L.; Orin, M.; Wohlfart, S.; Bodemer, C.; et al. Automatic Recognition of the XLHED Phenotype from Facial Images. Am. J. Med. Genet. A 2017, 173, 2408–2414,
Liehr, T.; Acquarola, N.; Pyle, K.; St-Pierre, S.; Rinholm, M.; Bar, O.;Wilhelm, K.; Schreyer, I. Next Generation Phenotyping in Emanuel and Pallister-Killian Syndrome Using Computer-Aided Facial Dysmorphology Analysis of 2D Photos. Clin. Genet. 2018, 93, 378–381. https://doi.org/10.1002/ajmg.a.38343.
Amudhavalli, S.M.; Hanson, R.; Angle, B.; Bontempo, K.; Gripp, K.W. Further Delineation of Aymé-Gripp Syndrome and Use of Automated Facial Analysis Tool. Am. J. Med. Genet. A 2018, 176, 1648–1656. https://doi.org/10.1002/ajmg.a.38832.
Pode-Shakked, B.; Finezilber, Y.; Levi, Y.; Liber, S.; Fleischer, N.; Greenbaum, L.; Raas-Rothschild, A. Shared Facial Phenotype of Patients with Mucolipidosis Type IV: A Clinical Observation Reaffirmed by next Generation Phenotyping. Eur. J. Med. Genet. 2020, 63, 103927. https://doi.org/10.1016/j.ejmg.2020.103927.
Wang, Y.; Li, N.; Su, Z.; Xu, Y.; Liu, S.; Chen, Y.; Li, X.; Shen, Y.; Hung, C.; Wang, J.; et al. The Phenotypic Spectrum of Kabuki Syndrome in Patients of Chinese Descent: A Case Series. Am. J. Med. Genet. A 2020, 182, 640–651. https://doi.org/10.1002/ajmg.a.61467.
Porras, A.R.; Summar, M.; Linguraru, M.G. Objective Differential Diagnosis of Noonan and Williams-Beuren Syndromes in Diverse Populations Using Quantitative Facial Phenotyping. Mol. Genet. Genom. Med. 2021, 9, e1636. https://doi.org/10.1002/mgg3.1636.
Forte, C.; Voinea, A.; Chichirau, M.; Yeshmagambetova, G.; Albrecht, L.M.; Erfurt, C.; Freundt, L.A.; Carmo, L.O.E.; Henning, R.H.; van der Horst, I.C.C.; et al. Deep Learning for Identification of Acute Illness and Facial Cues of Illness. Front. Med. 2021, 8, 661309. https://doi.org/10.3389/fmed.2021.661309.
Lin, S.; Li, Z.; Fu, B.; Chen, S.; Li, X.; Wang, Y.; Wang, X.; Lv, B.; Xu, B.; Song, X.; et al. Feasibility of Using Deep Learning to Detect Coronary Artery Disease Based on Facial Photo. Eur. Heart J. 2020, 41, 4400–4411. https://doi.org/10.1093/eurheartj/ehaa640.
Blanck-Lubarsch, Moritz, et al. "Simplifying diagnosis of fetal alcohol syndrome using machine learning methods." Frontiers in Pediatrics 9 (2022): 707566. https://doi.org/10.3389/fped.2021.707566.
Valentine, M.; Bihm, D.C.J.;Wolf, L.; Hoyme, H.E.; May, P.A.; Buckley, D.; Kalberg,W.; Abdul-Rahman, O.A. Computer-Aided Recognition of Facial Attributes for Fetal Alcohol Spectrum Disorders. Pediatrics 2017, 140, e20162028. https://doi.org/10.1542/peds.2016-2028.
Das, Sancharee, and Rupal Bhargava. "Vision-Based Fatigue Detection In Drivers Using Multi-Facial Feature Fusion." 2023 15th International Conference on Developments in eSystems Engineering (DeSE). IEEE, 2023. DOI: 10.1109/DeSE58274.2023.10099741.
Jung, S.-G.; An, J.; Kwak, H.; Salminen, J.; Jansen, B. Inferring Social Media Users’ Demographics from Profile Pictures: A Face++ Analysis on Twitter Users. In Proceedings of the International Conference on Electronic Business (ICEB), Dubai, United Arab Emirates, 4–8 December 2017.
Miller, M.Q.; Hadlock, T.A.; Fortier, E.; Guarin, D.L. The Auto-eFACE: Machine Learning-Enhanced Program Yields Automated Facial Palsy Assessment Tool. Plast. Reconstr. Surg. 2021, 147, 467–474. DOI: 10.1097/PRS.0000000000007572.
Guo, X.; Meng, T.; Huang, J.; Wang, X.; Lian, W.; Deng, K.; Gao, L.; Wang, Z.; Xing, B.; Long, X. 3D Facial Analysis in Acromegaly: Gender-Specific Features and Clinical Correlations. Front. Endocrinol. 2018, 9, 722. https://doi.org/10.3389/fendo.2018.00722.
Kruszka, Paul, et al. "22q11. 2 deletion syndrome in diverse populations." American Journal of Medical Genetics Part A 173.4 (2017): 879-888. https://doi.org/10.1002/ajmg.a.38199.
Qiang, Jiaqi, et al. "Review on facial-recognition-based applications in disease diagnosis." Bioengineering, 9(7), 273, 2022, https://doi.org/10.3390/bioengineering9070273.
Slagboom, Tessa NA, et al. "Prevalence of clinical signs, symptoms and comorbidities at diagnosis of acromegaly: a systematic review in accordance with PRISMA guidelines." Pituitary (2023): 1-14. https://doi.org/10.1007/s11102-023-01322-7.
Kong, Xiangyi, et al. "Automatic detection of acromegaly from facial photographs using machine learning methods." EBioMedicine 27 (2018): 94-102. https://doi.org/10.1016/j.ebiom.2017.12.015.
Chen, S.; Pan, Z.-X.; Zhu, H.-J.; Wang, Q.; Yang, J.-J.; Lei, Y.; Li, J.-Q.; Pan, H. Development of a Computer-Aided Tool for the Pattern Recognition of Facial Features in Diagnosing Turner Syndrome: Comparison of Diagnostic Accuracy with Clinical Workers. Sci. Rep. 2018, 8, 9317. https://doi.org/10.1038/s41598-018-27586-9.
Fan, Y.; Li, Y.; Li, Y.; Feng, S.; Bao, X.; Feng, M.; Wang, R. Development and Assessment of Machine Learning Algorithms for Predicting Remission after Transsphenoidal Surgery among Patients with Acromegaly. Endocrine 2020, 67, 412–422. https://doi.org/10.1007/s12020-019-02121-6.
Mishima, H.; Suzuki, H.; Doi, M.; Miyazaki, M.; Watanabe, S.; Matsumoto, T.; Morifuji, K.; Moriuchi, H.; Yoshiura, K.-I.; Kondoh, T.; et al. Evaluation of Face2Gene Using Facial Images of Patients with Congenital Dysmorphic Syndromes Recruited in Japan. J. Hum. Genet. 2019, 64, 789–794. https://doi.org/10.1038/s10038-019-0619-z.
Porras, A.R.; Rosenbaum, K.; Tor-Diez, C.; Summar, M.; Linguraru, M.G. Development and Evaluation of a Machine Learning-Based Point-of-Care Screening Tool for Genetic Syndromes in Children: A Multinational Retrospective Study. Lancet Digit. Health 2021, 3, e635–e643. https://doi.org/10.1016/S2589-7500(21)00137-0.
Topol, E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019, 25, 44–56. https://doi.org/10.1038/s41591-018-0300-7.
Langevin, R.; Ali, M.R.; Sen, T.; Snyder, C.; Myers, T.; Dorsey, E.R.; Hoque, M.E. The PARK Framework for Automated Analysis of Parkinson’s Disease Characteristics. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 1–22, 2019, https://doi.org/10.1145/3328925.
Pantel, J.T.; Zhao, M.; Mensah, M.A.; Hajjir, N.; Hsieh, T.-C.; Hanani, Y.; Fleischer, N.; Kamphans, T.; Mundlos, S.; Gurovich, Y.; et al. Advances in Computer-Assisted Syndrome Recognition and Differentiation in a Set of Metabolic Disorders. bioRxiv 219394, 2017, https://doi.org/10.1101/219394.
Wu, D.; Chen, S.; Zhang, Y.; Zhang, H.;Wang, Q.; Li, J.; Fu, Y.;Wang, S.; Yang, H.; Du, H.; et al. Facial Recognition Intensity in Disease Diagnosis Using Automatic Facial Recognition. J. Pers. Med. 11, 1172, 2021, https://doi.org/10.3390/jpm11111172.
Hallgrímsson, B.; Aponte, J.D.; Katz, D.C.; Bannister, J.J.; Riccardi, S.L.; Mahasuwan, N.; McInnes, B.L.; Ferrara, T.M.; Lipman, D.M.; Neves, A.B.; et al. Automated Syndrome Diagnosis by Three-Dimensional Facial Imaging. Genet. Med. 22, 1682–1693, 2020, https://doi.org/10.1038/s41436-020-0845-y.
Boualia, Sameh Neili, and Najoua Essoukri Ben Amara. "3D CNN for human action recognition." 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 2021, DOI: 10.1109/SSD52085.2021.9429429.
Khairnar, Smita, et al. "Face Liveness Detection Using Artificial Intelligence Techniques: A Systematic Literature Review and Future Directions." Big Data and Cognitive Computing, 7(1), 37, 2023. https://doi.org/10.3390/bdcc7010037.
Guanjie Liu, Y.W.; Guanjie Liu, Y.W. A Computer-Aided System for Ocular Myasthenia Gravis Diagnosis. Tsinghua Sci. Technol. 26, 749–758, 2021, DOI: 10.26599/TST.2021.9010025.
Arac, A.Machine Learning for 3D Kinematic Analysis of Movements in Neurorehabilitation. Curr. Neurol. Neurosci. Rep. 20, 29, 2020, https://doi.org/10.1007/s11910-020-01049-z.
Savchenko, Andrey V., Lyudmila V. Savchenko, and Ilya Makarov. "Classifying emotions and engagement in online learning based on a single facial expression recognition neural network." IEEE Transactions on Affective Computing, 13(4), 2132-2143, 2022, DOI: 10.1109/TAFFC.2022.3188390.
Hassan, T.; Seus, D.; Wollenberg, J.; Weitz, K.; Kunz, M.; Lautenbacher, S.; Garbas, J.-U.; Schmid, U. Automatic Detection of Pain from Facial Expressions: A Survey. IEEE Trans. Pattern. Anal. Mach. Intell, 43, 1815–1831, 2021, DOI: 10.1109/TPAMI.2019.2958341.
Zhao, X.; Zou, J.; Li, H.; Dellandrea, E.; Kakadiaris, I.A.; Chen, L. Automatic 2.5-D Facial Landmarking and Emotion Annotation for Social Interaction Assistance. IEEE Trans. Cybern, 46, 2042–2055, 2016, DOI: 10.1109/TCYB.2015.2461131.
Boonipat, T.; Asaad, M.; Lin, J.; Glass, G.E.; Mardini, S.; Stotland, M. Using Artificial Intelligence to Measure Facial Expression Following Facial Reanimation Surgery. Plast. Reconstr. Surg., 146, 1147–1150, 2020, DOI: 10.1097/PRS.0000000000007251.
Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine Learning Algorithm Validation with a Limited Sample Size. PLoS ONE, 14, e0224365, 2019, https://doi.org/10.1371/journal.pone.0224365.
Niazi, M.K.K.; Parwani, A.V.; Gurcan, M.N. Digital Pathology and Artificial Intelligence. Lancet Oncol. 20, e253–e261, 2019, https://doi.org/10.1016/S1470-2045(19)30154-8.
93. Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial Intelligence in Radiology. Nat. Rev. Cancer, 18, 500–510, 2018, https://doi.org/10.1038/s41568-018-0016-5.
U.S. Food and Drug Administration Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan. 2021. Available online: https://www.fda.gov.
Katsanis, S.H.; Claes, P.; Doerr, M.; Cook-Deegan, R.; Tenenbaum, J.D.; Evans, B.J.; Lee, M.K.; Anderton, J.; Weinberg, S.M.; Wagner, J.K. A Survey of U.S. Public Perspectives on Facial Recognition Technology and Facial Imaging Data Practices in Health and Research Contexts. PLoS ONE, 16, e0257923, 2021, https://doi.org/10.1371/journal.pone.0261738.
Smith, M.; Miller, S. The Ethical Application of Biometric Facial Recognition Technology. AI Soc., 37, 167–175, 2022, https://doi.org/10.1007/s00146-021-01199-9.
Almeida, D.; Shmarko, K.; Lomas, E. The Ethics of Facial Recognition Technologies, Surveillance, and Accountability in an Age of Artificial Intelligence: A Comparative Analysis of US, EU, and UK Regulatory Frameworks. AI Ethics, 1–11, 2021, https://doi.org/10.1007/s43681-021-00077-w.
Roundtree, A.K. Ethics and Facial Recognition Technology: An Integrative Review. In Proceedings of the 2021 3rd World Symp. Artif. (WSAI), Guangzhou, China, pp. 10–19, 18–20 June 2021, DOI: 10.1109/WSAI51899.2021.9486382.
Hongsong Chen, Y.Z.; Hongsong Chen, Y.Z. Security Issues and Defensive Approaches in Deep Learning Frameworks. Tsinghua Sci. Technol. 26, 894–905, 2021, DOI: 10.26599/TST.2020.9010050.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ghalib Ahmed Salman, Inas Jawad Kadhim, Ahmed Husham Al-Badri
This work is licensed under a Creative Commons Attribution 4.0 International License.